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Chapter 1

Introduction

The study of ordinary and partial differential equations constitutes a fundamental aspect of
mathematical analysis. Its importance is primarily because differential equations are by far
the most preferred mathematical tool for modeling a wide variety of physical and economic
phenomena, ranging from the colossal arena of astronomy to the microscopic universe of ge-
netics, encompassing in between almost the entire gamut of human activity, including even
stock markets.

Generally, when a system is modeled by an ordinary differential equation (ODE) it is
done in such a way that the corresponding ODE describes the change with respect to time
(the independent variable) of some dependent variable; and the solution of the equation
represents the state of the system at that point in time. This enables us to predict its future
behavior. Indeed this ability to predict the evolution of system is of fundamental importance
and is the primary reason for their unique status.

Many of the mathematical models used for understanding physical, chemical, engi-
neering, or biological processes are described by nonlinear ordinary differential equations
and their widespread applicability to the sciences has generated in its trail a continuous
stream of several new problems of both theoretical and practical interest. Consequently, it
is a worthwhile endeavor to engage in an investigation of their properties and distinctive
features.

Some of the earliest investigations of nonlinear phenomena arose in the analysis of
water waves and in acoustics. Notable contributions were made in this context not only by
celebrated continental mathematicians like Cauchy, Poisson, Euler and Lagrange, but also
by several others such as Bossinesq, Cole, Stokes, Airy, Scott Russell, and Lord Rayleigh, to
name just a few. These mathematicians took a more practical view of such phenomena as
the propagation of shallow water waves in a canal or an artificial channel, or the propagation
of plane progressive sound waves of finite amplitude in air. Aside from hydrodynamic or
acoustic phenomena, it was realized quite early on that nonlinearity was an inherent feature
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2 Introduction

of many problems with regard to the theory of elasticity. In fact, the problem of a flexible
rod bent in one plane so that its two ends approach each other attracted the attention of
many brilliant minds including the Bernoullis, Euler, and Lagrange. Extensive studies of
viscous and compressible fluids by Goldstein, Reynolds, Prandtl, and Taylor also revealed
the role of nonlinearity.

In the 1920’s the Dutch electrical engineer Van der Pol first observed the phenomenon
of relaxation oscillations in electrical circuits employing vacuum tubes. Today such oscil-
lations are more commonly known as limit cycles. The Van der Pol oscillator is a non
conservative oscillator with nonlinear damping. Besides electrical circuits the Van der Pol
oscillator has also appeared in biology where Fitzhugh and Nagumo extended it as a model
for action potentials of neurons. It is also useful for modeling heart beats in human physi-
ology and surprisingly enough, has been applied even to model geological fault lines.

The use of modern computing devices has enabled us to make remarkable progress in
solving several problems belonging to the domain of nonlinear mathematics which challenged
many brilliant minds of the preceding centuries. In fact for over 250 years astronomers had
struggled with the nonlinear system of equations describing the motions of planets. To this
day the problem of stability of the solar system presents difficulties.

With the advent of high speed computers, most studies of nonlinear systems arising
in the natural sciences and engineering are carried out numerically. This, however, should
not be taken to mean that analytical methods are to be disregarded. Analytical methods of
investigations are useful because that have the potential to provide exact results as opposed
to graphical or numerical methods. Moreover the solution of a nonlinear equation often
possesses singularities which can be discovered and described by analytical methods alone.

However, unlike linear differential equations, there are very few general methods for
dealing with nonlinear ODEs. While planar nonlinear ODEs have been more extensively
analysed the situation in case of non planar systems is generally acknowledged to be rather
fuzzy.

It is therefore not surprising that the problem of linearization of nonlinear ODEs is
an area of considerable importance from the practical standpoint owing to an abundance of
tools and techniques for their solution. Closely related to this is the issue of symmetries of
such equations. This follows from the general notion that a differential equation is solvable
only if it displays some sort of inherent symmetry. The determination of its symmetries and
their consequent applications for unearthing solutions or first integrals of nonlinear ODEs
constitutes the very essence of Lie’s seminal work. The search for first integrals of ODEs is
a common feature of many of the methods employed for their analysis. A number of tech-
niques have been devised for unearthing them, at times based on symmetries and in some
cases shrewd insights. Their existence together with the Hamiltonian aspects of nonlinear
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ordinary and partial differential equations is also of profound interest from the geometrical
point of view.

In view of the above we have focussed our attention primarily on the following four
aspects of the study of nonlinear ordinary differential equations:
• Lie symmetries of nonlinear ODEs.
• Linearization of nonlinear ODEs.
• Determination of first integrals and Darboux integrability.
• Jacobi’s Last multiplier and its applications.

1.1 Symmetries of Ordinary Differential Equation

The subject of symmetry analysis of ODEs was almost single handedly developed by Sophus
Lie [41, 100, 82], in the third quarter of the nineteenth century. Such has been the impact
of Lie’s seminal work that by and large the methods discovered by him have remained more
or less unchanged for over 100 years– a rare event indeed.

A symmetry transformation of an ODE is a transformation which maps the solution
set of the equation to itself. This requires that the form of the ODE be invariant under the
transformation. The essential concept being a preservation of form or structure.

In general to solve an ordinary differential equation one usually checks whether the
ODE belongs to a known class such as the class of linear ODEs or if it can be transformed
to a known class by a simple transformation of the dependent and independent variables.
If the above techniques fail, one can try more elaborate transformations or even an ad hoc
ansatz to find the solution. There is no guarantee in general that these efforts will succeed
and it may happen that the problem remains unsolved. However, it is found that in the
majority of cases when an exact solution of an ODE can be found, the underlying prop-
erty is a symmetry of that equation. Therefore symmetry analysis of differential equations
is of fundamental importance and its applications extend to several areas of physical and
chemical sciences including crystallography as also within different branches of mathematics
itself. This importance is further enhanced by the fact that according to the highly suc-
cessful physical theories of the 20-th century all physical interactions (including gravity) act
in accordance with an idea (the ‘gauge connection’) which depends crucially upon certain
physical structures possessing an exact symmetry at the fundamental level of description.

Investigations of point symmetries of ordinary differential equations were principally
motivated by physical problems, often involving linear equations [1]. In [61, 62] Mahomed
and Leach showed that the number of point symmetries which a second-order equation
can posses is exactly one of 0,1,2,3 or 8. If a nonlinear second-order equation has eight
symmetries, which can only mean that its underlying algebra is the sl(3, R) algebra, then it
is linearizable via a point transformation. Consequently a second-order equation with eight
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symmetries actually belongs to the class of a free particle equation [91].
For first-order ODEs, Lie [56] showed how to construct an integrating factor from each
admitted point symmetry. Conversely, he also showed how each integrating factor could
yield an admitted point symmetry. Furthermore if the system of ODEs is self-adjoint, then
its integrating factors are necessarily solutions of its linearized system. Such solutions are the
symmetries of the given system of ODEs. On the other hand if the system is not self-adjoint,
then its integrating factors are necessarily solutions of the adjoint of its linearized system.
Such solutions are known as adjoint symmetries of the given system of ODEs [36, 89, 90].
Anco and Bluman [2] have introduced an adjoint-invariance condition which is a necessary
and sufficient condition for an admitted adjoint symmetry to be an integrating factor. They
also present an explicit formula for the first integral corresponding to each integrating factor.

1.2 Linearization of Differential Equations

The linearization problem for a general second-order ordinary differential equation was first
solved by Lie [58] who deduced the relevant criterion. Tresse [104] also worked on the same
problem and deduced similar criterion for linearization in terms of relative invariants of the
equivalence group of point transformation of the form

(t, x) 7→ (T,X) where T = G(t, x), X = F (t, x).

E. Cartan [7], on the other hand, studied the problem from a differential geometric point of
view.

In recent times a generalization of the above methods involving nonlocal transforma-
tions has been achieved by means of which a given ODE can be linearized. Its basis can
be traced to the pioneering techniques first employed by Sundman [103] in the context of
celestial mechanics. The most general conditions under which a second-order ODE is trans-
formable to the free particle equation (i.e. X ′′(T ) = 0) by means of a generalized Sundman
transformation of the form X(T ) = F (t, x) and dT = G(t, x)dt were obtained by Duarté et
al [25]. Here F and G are assumed to be smooth functions. Thereafter by using the fun-
damental invariants of this equation they obtained the first integrals of second-order ODEs,
which could be linearized. The case of the general anharmonic oscillator was treated by
Euler and Euler [27, 28, 29] who also investigated the Sundman symmetries of second-order
and third-order nonlinear ODEs. It is important to note that these symmetries which are
in general nonlocal can be calculated in a systematic manner and may be used to determine
the first integrals of the equations as will be illustrated later on in this work.

Finally it must be mentioned that Meleshko et al [43, 64, 97] have also addressed the
issue of linearization for coupled second and third-order ODEs by using a technique which
gives more general linearization criteria then the usual linearization via point transforma-
tions. The process has also been extended to fourth-order ODEs in [42].
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1.3 The Darboux Method of Integrability

It is well known that for a two dimensional system the existence of a first integral completely
determines its phase portrait. It is well known that such systems, do not exhibit chaos
because of the Poincaré-Bendixson theorem [40]. According to this theorem, for a two
dimensional system of ordinary differential equations, which is real analytic and defined in a
simply connected domain, any compact limit set of the system is either a fixed point, a cycle or
a union of fixed points and connections, i.e. a polycycle. In three dimension this is no longer
true. In the case of non-planar systems, the problem of determining first integrals is a non-
trivial task in general, and various methods have been introduced for studying the existence
of such first integrals. However, except for some special cases [22, 34, 35, 38, 39] there are few
known satisfactory general methods for their determination. In 1878 Darboux [21] initiated
the theory of planar polynomial differential systems and his work provided a link between
algebraic geometry and the search of first integrals. He demonstrated how to construct
first integrals of polynomial vector fields in R2 or C2. The extension of Darboux theory of
integrability to polynomial systems in Rn and Cn (for n ≥ 3) was given by Jouanolou [48].
This yielded the notion, of what is today known as Darboux integrability (cf. [13, 15, 16, 37]).
Research in this area which lies at the crossroads of ODE theory with algebraic geometry
and differential algebra, has deep implications for the problem of the center, as well as, for
Hilbert’s 16th problem on limit cycles. In an interesting survey, Schlomiuk [94] has described
the early ideas of Darboux and related them to the influential paper of M. J. Prelle and M.
F. Singer [87].

The existing literature on planar differential systems is indeed vast and has a rich
history [14]. Moreover as the existence of first integrals leads to a reduction of the order of
the ODEs under consideration it constitutes an important ingredient of their analysis.

A first integral of a system of ODEs is any non-constant globally differentiable func-
tion I(t, x1, . . . , xn) that retains a constant value on any integral curve of the system. This
means its derivative with respect to the independent variable t must vanish on the solu-
tion curves. In many cases, the determination of a first integral is considerably simplified
by the existence of what are known as second integrals . The polynomial second integrals
for polynomial vector fields are called Darboux polynomials (monic irreducible polynomials)
and their importance stems from the fact that the computation of a rational first integral
I = F/G for a polynomial vector field D is actually equivalent to the computation of its
Darboux polynomials.

A polynomial system is said to be Darboux integrable if it possesses a first integral
or an integrating factor given by Darboux polynomials. In particular, Darboux showed (see
for example [13]) that a polynomial system of degree n with at least n(n + 1)/2 + 1 invari-
ant algebraic curves has a first integral which can be expressed by means of these algebraic
curves. This theory of integrability also received contributions from the work of Poincaré,
whose main interest was on rational first integrals.
Darboux showed that one can construct an integrating factor (and first integrals) of pla-
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nar polynomial differential systems if there exists a sufficient number of invariant algebraic
curves (real or complex).
Therefore, invariant algebraic curves are the key elements of the Darboux method. In 1979
Jouanolou [48] showed that if the number of invariant algebraic curves of a polynomial sys-
tem of degree d is at least [n(n + 1)/2] + 2, then the vector field has a rational first integral
and, in particular, all its solutions are algebraic curves.

The knowledge of algebraic curves can also be used to study the topological properties
of the system, for example, the inverse of the integrating factor must be null over all the
limit cycles which are isolated periodic orbits contained in the plane.

1.3.1 Planar differential systems

As one of our chief interests is in the integrability of a planar polynomial differential system
we have made substantial use of the notion of Darboux polynomials and their determination
by means of the Prelle-Singer semi algorithm to deduce first integrals of planar differential
systems. A major step towards the construction of an algorithm for solving first order or-
dinary differential equations (ODEs) was put forward by Prelle and Singer [87]. This is a
semi-algorithmic procedure for solving nonlinear first-order ordinary differential equations.
The Prelle-Singer method [87] provides the form of the integrating factor when the solu-
tion of the associated system of differential equations is expressible in terms of elementary
functions. Their paper has had a profound influence and has provided some of the fundamen-
tal algebraic results required for the automated solution of ODEs using computer algebra.
Therefore, it has motivated many extension of the original idea [18, 63, 95]. An extension of
their method provides the form of an integrating factor when the solution is expressible in
terms of Liouvillian functions. In 1992, Singer [96] derived the form of the integrating factor
when a polynomial system has a Liouvillian first integral. On the other hand, Christopher
in [14] provided the Liouvillian first integrals of second-order polynomial differential equa-
tions. In an interesting paper Llibre and Pereira defined four different kinds of multiplicity
of an invariant algebraic curve for a given polynomial vector field and investigated their
relationships [59]. The introduction of the notion of multiplicity has led to an extension of
the classical Darboux theory of integrabity. Duarte et. al. present a semi-decision procedure
to tackle first-order ODEs with Liouvillion function in the solution [26].

In an interesting paper Man and MacCallum [63] have formulated a method to compute
the elementary solutions of the second order differential equations, which shares certain
commonalities with the Darboux and Prelle-Singer procedures and is quite useful in dealing
with certain non-planar polynomial differential systems.

The Prelle-Singer method was extended by Duarte et al. [23, 24] to second-order
ODEs. Recently the theory has been further generalized by Lakshmanan and his cowork-
ers [8, 9, 10] to obtain rational first integrals and the general solution of a specific class of
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nonlinear second and third-order equations. Their work provides a systematic way for iden-
tifying integrable cases as well as constructing the integrating factors, integrals of motion
and general solutions of second-order nonlinear ordinary differential equations.

1.3.2 Non-planar dynamical systems

Non planar dynamical systems are frequently encountered not only as theoretical idealiza-
tions of physical processes, such as rigid body dynamics but in concrete real life situations
involving diverse phenomena ranging from atmospheric sciences (Lorenz system) to studies
involving human physiology (Hindmarsh-Rose model) besides others. Compared to planar
dynamical systems the situation in terms of available methods for their analysis is even more
limited for non planar systems of ODEs.

The problem of integrating a set of ODEs describing a given non planar dynamical
system is compounded by a number of hurdles such as the equations being in general non-
linear, usually involving several degrees of freedom and in addition are more likely to be
coupled. In fact except for the Painlevé criteria there are no concrete tests for deciding
whether a given dynamical systems is integrable or not. The Painlevé criteria requires that
the solution of the differential equation posses no movable (i.e., initial condition dependent)
singularities other than poles in the complex time plane [99]. Equations which satisfy this
condition are said to possess the Painlevé property and the latter property has been used to
identify new integrable Hamiltonian systems as well as integrable cases of non-Hamiltonian
systems such as Lorentz equations, the Lotka-Voltera system etc. Generally dynamical sys-
tems described by coupled nonlinear ordinary differential equations are non Hamiltonian in
character and describe the time evolution of physical processes which are mainly dissipative
in nature. Consequently in course of their evolution the phase space volumes contract and
the motion is often attracted by fixed points or even periodic orbits.

However, a majority of nonlinear systems which depend on one or more parameters
often exhibit a range of values of their parameters for which the solution approaches a much
more complicated type of attractor. These are subsets of the phase space with a cantor-like
structure, called strange attractors, on which the motion is widely chaotic in the sense that
it depends sensitively on the choice of initial conditions.

The self generated chaotic behavior of certain dynamical systems constitutes one of
the most interesting areas in the study of dynamical systems. In fact most nonlinear systems
are non-integrable and posses large classes of solutions with truly random properties. The
identification of integrable dynamical systems and the determination of the size of the chaotic
region of the corresponding phase space is therefore a major problem and often gives rise to
exciting new results. The existence of first integrals in the study of non planar dynamical
systems is extremely important since it greatly simplifies their analysis especially in the
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infinite time limit. Some of the existing methods for finding first integrals for non planar
systems of ODEs are enumerated below.

1. The Frobenius integrability theorem provides a direct approach for finding first inte-
grals for non-planar ordinary differential equations where the emphasis is on deter-
mining the values of the parameters for which the system admits a first integral. By
employing this technique new constants of motion have found for the Lotka-Voltera
and certain other systems [4, 101].

2. An alternative procedure is to assume a specific ansatz for the first integrals. The usual
ansatz is to choose a polynomial of suitable degree in the phase space coordinates. This
procedure was employed by Kus [54] for the determination of new constants of motion
for the Lorentz model which does not fulfil the Painlevé criteria.

3. A variation of the above procedure due to Giacomini et.al. [33] also employs an ansatz
for the first integral, but it is of a more general character. Here a polynomial in one
of the coordinates of the system of suitable degree is first chosen whose coefficients
are unknown functions of the remaining coordinates. These functions must satisfy an
over determined set of partial differential equations and are consistent only for certain
particular values of the parameters of the system.

1.4 The Jacobi Last Multiplier method

Carl Gustav Jacob Jacobi was a prolific mathematician who is often considered as the suc-
cessor to the venerable Gauss. Although today Jacobi is known mostly for his contributions
to the theory of elliptic functions, his work on differential equations and most notably on the
theory of the last multiplier may only be ranked second in importance to his investigations
in elliptic functions.

The earliest reference to Jacobi’s last multiplier (JLM) can be traced to the summary
of his lecture at the Congress of Italian Scientists in Lucca in 1843, which appeared under
the English title “On the principle of the last multiplier and its use as a new broad principle
of mechanics” in 1844 [45]. A more detailed account of the last multiplier along with its
applications in Classical Mechanics appeared in his lectures on dynamics, published posthu-
mously after his death in 1851 [46].

Although some studies on the last multiplier were carried out in various contexts, the
most significant development thereafter was the discovery by Lie that there exists a close
relationship between the JLM and Lie Symmetries. This promptly led to a keen interest in
the last multiplier especially with regard to its relationships with first integrals of differen-
tial equations, its possible generalization, deductions of nonlocal Lie symmetries and also
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to its role in determining a Lagrangian for systems of second-order ODEs. Indeed the last
feature seems to have been forgotten with the passage of time. Although a very clear and
concise description of the JLM in the context of its role in reducing a systems of first-order
ODEs to quadrature is given in Whittaker’s book on analytical dynamics [105], the precise
nature of the relationship between the JLM and the Lagrangian of a system of second-order
ODEs is best dealt with in an article titled “ On the reduction of dynamical equations to the
Lagrangian form” by Madhava Rao published in 1940, in which he considers a Lagrangian
which is a quadratic form in the generalized velocities. For a single second-order ODE
y′′ = w(x, y, y′) which admits a Lagrangian function L(x, y, y′) the Jacobi Last Multiplier,
M , is given by M = ∂2L

∂y′2 .

The inverse problem of the calculus of variations has always been of interest to physi-
cists and mathematicians alike in their efforts to obtain a Lagrangian description of second
and higher-order ODEs. In recent years there has also been a great deal of interest in dissi-
pative dynamical systems, in studying the existence of limit cycles etc. The importance of
the JLM stems from the fact that it plays an important part in all these problems besides
providing a very simple yet powerful mechanism for finding a Lagrangian of any second-order
differential equation. This together with its connection to Lie Symmetries [56, 57] makes
it an ideal tool for probing various properties of ODEs as will be described later on in the
work. In fact recently Leach and Nucci derived Lagrangians for many second-order differen-
tial equations using Jacobi’s last multiplier [76, 77, 78, 79, 80] which provided in a sense the
impetus for our investigations.

1.5 Outline of the Thesis

The present work consists of nine chapters including the Introduction. Chapter 2 begins
with a brief survey of some of the elementary properties of ordinary differential equations
before moving on to the basic principles of Darboux integrability and applications of the
latter in determining first integrals for planar and nonplanar systems. This is followed by a
short review of fixed point and phase space analysis of nonlinear ODEs.

As is well known symmetry analysis of ODEs is in itself a vast subject and even
though any attempt to encapsulate its essential tools and techniques within the confines
of a single chapter is bound to fail, we have nevertheless endeavoured to explain some of
the key features of Lie symmetries which are relevant for understanding some of our subse-
quent results. This is followed by a discussion of the linearization problem of ODEs under
point and nonpoint transformations. The chapter ends with an exposition of some of the
fundamental properties of Jacobi’s last multiplier which has made an appearance in the
recent mathematical literature after a gap of almost a century. Much of the material pre-
sented in this chapter is in the nature of a review serving as a backdrop for the later chapters.

In Chapter 3 we address the problem of finding first integrals of the Painlevé-Gambier
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equations as well as of an equation of the Liénard type. The method employed for this pur-
pose is based on an extension of the Prelle-Singer technique as formulated by Chandrasekhar
et al. The systems studied also include two dimensional problems such as the Kepler prob-
lem in 2D. This is followed by an attempt to construct, using Darboux polynomials, first
integrals of a non planar system of equations closely related to the Raychaudhuri equation
in cosmology.

Chapter 4 introduces the notion of adjoint symmetries and investigates their role in
the determination of first integrals of nonlinear ODEs. A concise review of the extended
Prelle-Singer method is then furnished in order to unfold its relationship with the classical
adjoint symmetry equation. The relative advantages of these two approaches are illustrated
with a number of examples.

The concept of λ-symmetries has recently gained a lot of importance as they are
deemed to be, in some sense, generalization of Lie symmetries. Chapter 5 investigates
the relation between adjoint symmetries and λ-symmetries from the standpoint of finding
integrating factors of ODEs. It then explains how λ-symmetries may be found for some
second-order equations of the Painlevé-Gambier classification and ends by considering such
symmetries for a few third-order ODEs.

Chapter 6 is devoted to a description of generalized Sundman transformations (GST)
which are of a nonlocal character. After introducing the notion of a generalized Sundman
transformation we define the associated Sundman symmetry and illustrate these concepts in
the general case of the Jacobi equation . Explicit results are provided for several equations
of the Painlevé-Gambier classification from the perspective of the GST and their associated
Sundman symmetry including also their solution. New first integrals for some of these as
well as other equations of the Painlevé-Gambier class.

An extension of the GST, in which both the independent and dependent variables
transform in a completely nonlocal manner, is considered in Chapter 7. We illustrate the
effectiveness of such nonlocal transformations for computation of first integrals of a general-
ized time-dependent Riccati equation after which a similar analysis is undertaken for certain
third-order ODEs.

The first section of Chapter 8 contains a delineation of the relationship between the
Jacobi Last Multiplier (JLM) and the Lagrangian of a second-order ODE. It includes a
deduction of the Lagrangians for the six Painlevé equations and also their corresponding
Hamiltonians. It also briefly outlines the procedure for other equations of the Painlevé-
Gambier classification. This is followed by a similar analysis for second-order equations of
the Liénard type in section 3 which also includes a specific instance of a generic equation of
nonlinear oscillator type. Finally in section 4 we apply the technique to a number of systems
of coupled second-order ODEs.
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The work ends with a modest outlook in Chapter 9.

Finally we consider it pertinent to add a few remarks on the Painlevé-Gambier equa-
tions which have a rather interesting origin and frequently appear in many of the examples
presented here. The fundamental problem which Painlevé, Gambier Fuchs addressed was
a question first raised by Picard concerning second-order first-degree ODEs of the form
w′′ = F (z, w, w′) where F is rational in w′, algebraic in w and locally analytic in z and
having the property that all movable singularities of all solutions are poles. A differential
equation is said have the Painlevé property if all solutions are single valued around all mov-
able singularities. Within the Mobius transformation, Painlevé and his school found 50 such
equations which are classified in Ince’s book [44]. Among all these equations six of them
are irreducible and define the classical transcendents PI , PII , , PV I while the remaining 44
equations are either solvable in terms of known functions or can be transformed into one of
the six Painlevé equations. These equations may be regarded as the nonlinear counterparts
of the classical special equations. For example PII has solutions which has similar properties
as Airy’s functions [17].
Although the Painlevé equations were discovered from strictly mathematical considerations
they have appeared in many physical problems including statistical mechanics, random ma-
trices, plasma physics, nonlinear waves, quantum gravity, general relativity and nonlinear
optics. Recently there has been considerable interest in the Painlevé equations as they arise
as reductions of the soliton equations which are solvable by inverse scattering.

1.6 Summary of findings

1. Using the extended Prelle-Singer method we have derive a new first integral for the
equation XXII of the Painlevé-Gambier class and have obtained a formula for deducing
the known first integrals, of a particular form, belonging to this classification.

2. Existence of first integrals for a Generalized Raychaudhuri equation arising in modern
string inspired cosmology, We described employing the notion of Darboux theory of
integrability for polynomial ODEs.

3. The exact nature of the relationship between the so called extended Prelle-Singer
method and the classical adjoint symmetry equation of the symmetry analysis has
been unravelled. It is found that the extended Prelle-Singer method is actually a
decomposition of the adjoint symmetry equation into a system first-order ODEs.

4. We have explored the λ-symmetries of some second-order equations of the Painlevé-
Gambier type and have studied their relationship with the standard adjoint symmetry
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equation used for determining the integrating factor of a second-order ODE. In Partic-
ular have also computed the λ-symmetries of the Painlevé-Gambier equation numbers
III, VIII, XIX and XXX and have followed it up with a brief study of the λ-symmetries
of certain special types of third-order ODEs.

5. By means of the Generalized Sundman transformation (GST) we have obtained the
known and five new first integrals of Painlevé-Gambier equations bearing numbers XI,
XVII, XXXVII, XLI and XLII. All the known integrals are time-independent and are
identical to those given in Ince’s book [44]. The time-dependent integrals appear to
be new to the literature. We have also computed the Sundman symmetries of these
equations as well as their solutions.

6. In order to generalize the notion of a GST considered a nonlocal transformations of
the form

dX = A(x, t)dx + B(x, t)dt,

dT = C(x, t)dx + D(x, t)dt

and have shown that this transformation provide us with an effective tool for the
determination of a first integral in several particular cases. Exploiting the above trans-
formation we have deduce a time-dependent first integral for a generalized second-order
nonautonomous Riccati differential equation. Finally, we have considered applications
of the method to third-order time-dependent ODEs.

7. A fairly extensive account of the Jacobi Last multiplier is presented in this work. As
an application of this concept to Lagrangian and Hamiltonian of the Six Painlevé
transcendents using the Last multiplier. For the Liénard equation by means of a novel
transformation we have shown how the JLM may be used to find the Lagrangian.
Further application to coupled second-order system are also included.



Chapter 2

Ordinary Differential Equations

2.1 Introduction

An ordinary differential equation (ODE) is an equation of the form

F (x, y, y′, . . . , y(n)) = 0. (2.1.1)

which relates an independent variable x, the required function y = y(x), and at least one of
its derivatives y′, y′′, . . . , y(n).
Here F is a specified function of its arguments and the prime denotes the usual derivative.

The degree of a differential equation is the power of the highest order derivative ap-
pearing in the equation.
The order of a differential equation is the order of the highest derivative appearing in the
equation.

A solution of an nth order ODE on the interval (a, b) is any function y = φ(x) which
has derivatives up to order n inclusive on that interval such that the substitution of the
function y = φ(x) and its derivatives into the differential equation turns the equation into
an identity with respect to x on (a, b). The graph of the solution of a differential equation
is called an integral curve of that equation.

2.1.1 The Cauchy problem

Assume that we have a first-order differential equation (FODE)

F (x, y, y′) = 0.

We can solve this equation for y′ when the inverse function of F exist and then the equation
is of the form

dy

dx
= f(x, y). (2.1.2)

13



14 Ordinary Differential Equations

Here f is a given function of its arguments. To isolate a definite solution of equation (2.1.2),
we must specify an initial condition which consist of preassigning for a certain value x0 of
the independent variable x a value y0 of the required function y(x), i.e.,

y|x=x0 = y0, or y(x0) = y0. (2.1.3)

The problem of finding the solution y(x) of equation (2.1.2) which satisfies the initial condi-
tion (2.1.3), is known as the Cauchy problem for equation (2.1.2).

2.1.2 Existence and Uniqueness of solution for given initial con-
dition:

Given a first-order ordinary differential equation

dy

dx
= f(x, y), (2.1.4)

with f(x, y) satisfying the following conditions:
(i) f(x, y) is continuous in a given region A,
(ii) |f(x, y)| ≤ M , a fixed real number in A,
(iii) |f(x, y1) − f(x, y2)| ≤ k|y1 − y2|, k being a fixed quantity for any two points (x, y1),
(x, y2) in the region A, it can be shown that-
if (x0, y0) be any point in A such that the rectangle R given by |x − x0| ≤ a, |y − y0| ≤ b,
where b > aM is such that R lies wholly within A, then there exist one and only one
continuous function y = φ(x) having continuous derivatives in |x − x0| ≤ a, which satisfies
the differential equation (2.1.4) and takes up the value φ(x0) = y0 when x = x0.
The condition (iii) i.e., |f(x, y1) − f(x, y2)| ≤ k|y1 − y2|, k being a fixed quantity for any
two points (x, y1) and (x, y2) in the region A, is known as the Cauchy-Lipschitz condition.
If f(x, y) admits continuous derivative and hence | ∂

∂y
f(x, y)| < k then the Cauchy-Lipschitz

condition is satisfied.
The proof may be found in [44].

2.1.3 Geometrical significance of an ordinary differential equation

Let us consider a differential equation

dy

dx
= f(x, y) (2.1.5)

of first-order and of first degree. The primitive of an ordinary differential of the first-order is
a relation between the two variables x and y and a parameter c and the differential equation
is said to represent a single parameter family of plane curves. Each curve of the family is
said to be an integral curve.
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In a Cartesian coordinate system the derivative dy/dx, of a curve gives the direction of
the tangent to the curve at a given point. Let A be the domain in the (x, y) plane throughout
which f(x, y) is single valued and continuous. Let (x0, y0) be a point lying in the interior
of the domain A. Let the value of dy/dx at the point (x0, y0) be m0. Thus, as a point
moves through (x0, y0), satisfying (2.1.5), with the direction of movement m0 it defines a line
element (x0, y0, m0). The line element may be defined with sufficient accuracy as the line
which joins the point x0, y0 and (x0 + δx, y0 + δy) where δx and δy are small and δy

δx
= m0).

After that, if the point moves to the point (x1, y1) at an infinitesimal distance on this line
element one can construct anther line-element (x1, y1,m1). Continuing this process a broken
line is obtained which may be regarded as an approximation to the integral curve which
passes through (x0, y0).

Since it has been assumed that f(x, y) is continuous and single valued at every point
of A, it follows that through every point there will pass one and only one integral curve.
Outside the region A there may be points at which f(x, y) may be continuous and single
valued. Such points are known as singular points and the behaviour of the integral curves
may be exceptional.
Similarly, for a second-order differential equation the aggregate of integral curves will form
a two parameter family.

2.1.4 Integrating Factors

Given an ODE in the form
dy

dx
=

P (x, y)

Q(x, y)
, (2.1.6)

the problem of finding its solution basically involves a process of separating the variables
to rewrite the equation as f(x)dx + g(y)dy = 0. Once this is achieved the equation may
be reduced to quadrature. One can achieve separation by multiplying the equation with
a suitable function of x and y such that the equation becomes exact, as will be explained
below.
From (2.1.6) we have

Pdx−Qdy = 0. (2.1.7)

We assume (2.1.7) is not exact. Then the problem of integrating such an equation essentially
requires finding a function µ(x, y) such that the expression

µ(Pdx−Qdy) ≡ du

i.e., it is a total differential. It follows therefore that, ∂u/∂x = µP and ∂u/∂y = µQ. The
condition for equality of the mixed derivative then gives

∂P

∂y
=

∂Q

∂x
. (2.1.8)
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The function µ(x, y) is called an integrating factor of the differential equation and is non
unique.

Theorem 2.1.1 The number of integrating factors of an equation which has a solution, is
infinite.

Proof:
Let µ(x, y) be an integrating factor of the equation (2.1.7), so that

µ(Pdx−Qdy) = du.

Hence u(x, y) is a solution of the equation. If f(u) be any function of u, then

µ f(u)(Pdx−Qdy) = f(u)du.

Now, the right hand expression is an exact differential since f(u)du can easily be integrated
to give φ(u). Thus the solution of the equation is

φ(u) = c,

showing that µf(u) is also an integrating factor of the equation (2.1.7). Since f(u) is an
arbitrary function of u the number of integrating factor is infinite.

2.1.5 Elementary rules for finding integrating factors

In many cases the integrating factors for an ODE can be found by inspection. When the
integrating factor cannot be found by inspection, the following elementary methods are used
to find it. Consider the differential equation Pdx + Qdy = 0 in which ∂P

∂y
6= ∂Q

∂x
, so that the

equation is not exact. The rules for finding integrating factors may be summarized as follows:

Rule I: If Px + Qy 6= 0 and the equation is homogeneous, then 1/Px + Qy is an inte-
grating factor of the equation Pdx + Qdy = 0.

Rule II: If Px−Qy 6= 0 and the equation can be written as {f(x, y)}ydx+{g(x, y)}xdy = 0,
then 1

Px−Qy
is an integrating factor of the equation Pdx + Qdy = 0.

Rule III: If 1
Q

(
∂P
∂y
− ∂Q

∂x

)
be a function of x alone, say f(x) then, e

∫
f(x)dx is an inte-

grating factor of the equation Pdx + Qdy = 0.

Rule IV: If 1
P

(
∂Q
∂x
− ∂P

∂y

)
be a function of x alone, say g(y) then, e

∫
g(y)dy is an integrating

factor of the equation Pdx + Qdy = 0.

Rule V: If the equation be of the form

xayb(mydx + nxdy) = 0,
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with a, b, m and n being constants, then xkm−a−1ykn−b−1, where k has any value, is an inte-
grating factor of the equation.
However, there are many ODEs for which an integrating factor cannot be found by the above
rules. In such cases other procedures have to be adopted. One of the main objectives of this
section is to describe how one can deduce an integrating factor for a system of ODEs using
the notion of Darboux polynomials which is now described.

2.2 The Method of Darboux Integrability

2.2.1 Planar differential equation

Consider a system of two first-order ODEs of the form

dx

dt
= Q(t, x, y),

dy

dt
= P (t, x, y). (2.2.1)

A solution of (2.2.1) namely x = x(t), y = y(t), assuming the values x(0), y(0) at t = t0 say,
defines in space a certain curve, which passes through the point P0(t0, x(0), y(0)) and is an
integral curve of the system (2.2.1).

In geometrical terms the Cauchy problem amounts to finding the integral curve of
(2.2.1) passing through the given point P0. An alternative interpretation of the solution of
(2.2.1), treats t as a parameter and x = x(t), y = y(t) as the parametric equation of a curve
in the x− y plane called the phase plane. The projection of the integral curve on the phase
plane, then gives the trajectory of the system. However, while from the integral curve one
can define the phase trajectory uniquely, the converse is not true in general.

If the right hand side of (2.2.1) is not explicitly dependent on t then the system is said
to be autonomous otherwise it is called a non-autonomous system.

2.2.2 Planar Polynomial Differential Equations:

For a planar system of ODEs

dx

dt
= Q(x, y),

dy

dt
= P (x, y). (2.2.2)

(Q,P ) represents the components of the tangent vector at the point (x, y). We define the
vector field D at a point (x, y) by

D := Q
∂

∂x
+ P

∂

∂y
(2.2.3)
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where ∂/∂x and ∂/∂y represent the directional derivatives along the X and Y axes respec-
tively. When P and Q are polynomials we say that D is a polynomial vector field of degree
d on C[x, y] if the maximum degree of the polynomials P (x, y) and Q(x, y) is d.

2.2.3 Invariant Algebraic Curve:

Definition 2.2.1 (Invariant curve): The curve f(x, y) = 0 is said to be an invariant
curve if ∇f = (∂f

∂x
, ∂f

∂y
) and (Q,P ) are orthogonal over the curve f(x, y) = 0, i.e.,

df

dt
= (Q

∂f

∂x
+ P

∂f

∂y
)
∣∣∣
f=0

= 0.

Definition 2.2.2 (Algebraic curve): An invariant curve f(x, y) = 0 is called an algebraic
curve of degree m when f(x, y) is a polynomial of degree m.

Definition 2.2.3 (Invariant algebraic curve): Let D be the vector field associated with
a planar differential system. A curve f(x, y) = 0 is an invariant algebraic curve if D[f ]/f
is a polynomial. The latter polynomial λf = D[f ]/f is usually called the cofactor of the
invariant algebraic curve.

2.2.4 First Integral

Next we introduce the notion of invariants for a system of differential equations. These
invariants are usually called first integrals or constants of motion.

Definition 2.2.4 A first integral of the system of ODE’s

dxi

dt
= Xi(t, x1, . . . , xn), i = 1, · · · , n, (2.2.4)

is any non-constant globally differentiable function Φ(t, x1, . . . , xn) that retains a constant
value on any integral curve of the system.

This means its derivative with respect to t vanishes on the solution curves, i.e.,

dΦ

dt
= 0 ⇒

∑
i

∂Φ

∂xi

dxi

dt
+

∂Φ

∂t
= 0 ⇒ D̃[Φ] = 0, (2.2.5)

where D̃ :=
∑

i Xi
∂

∂xi
+ ∂

∂t
. For an autonomous system this reduces to the following condition

∑
i

Xi
∂Φ

∂xi

= 0, (2.2.6)

where D =
∑

i Xi
∂

∂xi
is just the vector field associated with the given autonomous system.

In many cases, the determination of a first integral is considerably simplified, by the exis-
tence of what are known as second integrals.
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Definition 2.2.5 A second integral of a vector field D is a C1 function, f = f(x1, ·, xn) :
Kn → K such that D[f ] = λf where λ = λ(x1, . . . , xn) : Kn → K.

Here K be a field of characteristic zero1 where K is real or complex, and for our purposes
may either be R or C. Let us introduce next the notion of Darboux polynomials.

Definition 2.2.6 The polynomial second integrals for polynomial vector fields are called
Darboux polynomials (monic irreducible polynomials).

It is important to note in this context that the computation of a rational first integral
I = F/G, for a polynomial vector field D is equivalent to the computation of its Darboux
polynomials.

Proposition 2.2.1 Let F,G ∈ K[x] be two relatively prime polynomials, then I = F/G is
a rational first integral of Df iff there exist g ∈ K[x] such that

D[F ] = gF and D[G] = gG. (2.2.7)

Proof: Let I = F/G be a first integral of D, then GD[F ] = FD[G]. Therefore, G divides
FD[G]. Since F and G are relatively prime polynomials, D[G] = gG and hence D[F ] = gF .

Conversely, if D[F ] = gF and D[G] = gG, then GD[F ]− FD[G] = gGF − gFG = 0
and F/G is a first integral.

Proposition 2.2.2 Let P1 and P2 be Darboux polynomials then
(i) P1P2 is a Darboux polynomials.
(ii) All irreducible factors of Darboux polynomials are also Darboux polynomials.

Proof: Let D[P1] = g1P1 and D[P2] = g2P2, where g1, g2 ∈ K[x]. Then we have D[P1P2] =
(g1 + g2)P1P2. Therefore P1P2 is Darboux polynomial.

Conversely, Let P1 = Qr
1Q2 with Q1 and Q2 being relatively prime polynomials and

Q1 is irreducible. Then

rQr−1
1 D[Q1]−Qr

1D[Q2] = gQr
1Q2.

Since Qr
1Q2 divides rQr−1

1 D[Q1] − Qr
1D[Q2] and Q1 is relatively prime with Q2, Q1 must

divide D[Q1] and also Q2 must divide D[Q2].
By induction on Q2, all reducible factors of P1 are Darboux polynomials.

1A field with multiplication ∗ is of characteristic zero if the only element a of the field such that a ∗ b=0
for all b is a=0
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2.2.5 Elementary First Integrals

By an elementary first integral we mean a first integral involving elementary functions only
which for the present purpose may be roughly defined as follows.

Definition 2.2.7 A function F (x1, · · · , xn),∈ Cn is said to be elementary if it belongs to
the set S, which in turn is obtained from rational functions on Ck, k = 0, 1, ..., using a
finite series of the following operations: (a) algebraic operations such as addition, subtrac-
tion, multiplication and division, (b) solution of algebraic equations, (c) derivations and (d)
exponential and logarithmic operations.

Note that if in addition we include the operation of integration, then S becomes the set of
Liouvillian function.

2.2.6 An Algorithm for finding a Polynomial First Integral

Proposition 2.2.3 An n-dimensional polynomial vector field of degree d may depend upon
a certain number of parameters (λ1, λ2, . . . , λp). The problem is to determine the values of
(λ1, λ2, . . . , λp) such that the vector field admits a time independent polynomial first integral
of a given degree N .

Proof: Step 1: Let us start with degree N=1 for the first integral I(x).
Step 2: The most general form of a first integral I(x) of degree d is,

I(x) =
N∑

i=1

cixi.

Step 3: We compute the time derivative of I(x):

D[I] =

(
Q

∂

∂x
+ P

∂

∂y

)
[I] =

(
Q

∂

∂x
+ P

∂

∂y

) (
N∑

i=1

cixi

)
=

N+d−1∑
i=1

kixi.

Step 4: Since I is a first integral, D[I] = 0, it implies ki = 0. This system of equations is

a linear system for the coefficients ci of dimension at most

(
n + d + N − 1

n

)
. So if there

exist values of the parameters (λ1, λ2, . . . , λp) and a set of constants ci that are not all zero
such that ki = 0 for all i, then I(x) is a first integral. Otherwise, we increase the value of N
by 1 and return to the step 2.

Example 2.2.1 Consider the system

ẋ = 2z − 2x2 (2.2.8)

ẏ = −3xy (2.2.9)

ż = 4xz − 2x(2x2 − 9y2). (2.2.10)
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A first integral for this system using the above algorithm is found to be given by

I = z − x2 + 3y2

2.2.7 The method of Darboux polynomials

Let us consider the planar polynomial differential system (2.2.2) where P (x, y) =
∑m

i=0 Pi(x, y)
and Q(x, y) =

∑m
i=0 Qi(x, y) are co-prime polynomials in C such that max {deg P, deg Q} =

m and Pi(x, y) and Qi(x, y) are homogeneous components of degree i. The system may be
described by the vector field (2.2.3) or the differential one form

ω = Pdx−Qdy.

The corresponding phase-flow is given by the solutions of the first-order ordinary differential
equation

dy

dx
=

P (x, y)

Q(x, y)
. (2.2.11)

Suppose the vector field admits d distinct invariant algebraic curves fi, i = 1, ..., d.

(a) If there are ni ∈ C, not all zero, such that

d∑
i=1

niλi = 0 then the function
d∏

i=1

fni
i

is a first integral of the vector field D.

(b) If there exists ni ∈ C not all zero, such that
∑d

i=1 niλi = −divD, then
∏d

i=1 fni
i is

an integrating factor of D.
These results form the essential content of the Darboux theory of integrability.
Proof: We shall prove the second part of the proposition first. If R(x, y) be an integrating

factor of (2.2.11), then

RP dx−RQ dy = 0 and (RP )y = −(RQ)x, (2.2.12)

where the subscripts denote partial derivatives. The latter may be written as

D[R] := (Q∂x + P∂y)[R] = −div(Q,P )R = −(Qx + Py)R. (2.2.13)

This follows from the observation that the problem of determining the integrating factor R
is essentially one of finding a solution of the linear partial differential equation (2.2.13). This
being a first order PDE, we write the associated Lagrange one form:

dx

Q
=

dy

P
=

dR

−(Qx + Py)R
(2.2.14)
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Let there exist a certain number of Darboux polynomials fi satisfying

D[fi] = λifi (2.2.15)

where λi are suitable eigen polynomials. From (2.2.14) we have

dx

Q
=

dR

−(Qx + Py)R
=

∑
i

ni
fix

fi

dx =
∑

i

ni
QfixdR

−(Qx + Py)fiR
(2.2.16)

where ni’s are some rational numbers. Similarly multiplying by fiy/fi we have

dy

P
=

dR

−(Qx + Py)R
⇒

∑
i

ni
fiy

fi

dy =
∑

i

ni
PfiydR

−(Qx + Py)fiR
. (2.2.17)

Adding (2.2.16) and (2.2.17) we obtain

∑
i

ni
fixdx + fiydy

fi

=
∑

i

ni
D[fi]

−fi(Qx + Py)

dR

R
. (2.2.18)

But fi’s being Darboux polynomials we have

∑
i

ni
dfi

fi

=

∑
i niλi

−(Qx + Py)

dR

R

Let us demand that the rational numbers ni are such that∑
i

niλi = −(Qx + Py), (2.2.19)

whence it immediately follows

∑
i

ni
dfi

fi

=
dR

R
⇒ R =

∏
i

fni
i (2.2.20)

Thus, whenever the ODE has an elementary first integral, its corresponding integrating fac-
tor may be expressed in the above form.

If we can identify a sufficient number of Darboux polynomials fi satisfying

D[fi] = λifi (2.2.21)

where λi are suitable polynomials, then

D[R]

R
=

∑
i

ni
D[fi]

fi

= −(Qx + Py). (2.2.22)

Clearly Qx, Py are polynomials since Q,P are themselves polynomials; and therefore it is
necessary that fi|D[fi]. Therefore,

D[R]

R
= −divD. (2.2.23)

Furthermore when divD = 0 then D[R] = 0 so that R is a first integral.
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2.2.8 Extension of the Darboux method

In the following we describe an extension of Darboux’s method which allows us to find an
exponential integrating factor for an ODE. The integrating factor of some ODEs consists of
an exponential factor which cannot be found by the method just described. However, the
notion of Darboux polynomials continues to play a pivotal role in the determination of even
exponential integrating factors as we shall now show.

Definition 2.2.8 Let e = exp
(

M
N

)
where M and N are co-prime polynomials in R2. If

D[e]/e = Le then e is said to be an exponential factor of the vector field D of degree d when
D[e]/e is a polynomial of degree at most (d− 1). The polynomial Le is called the cofactor of
the exponential factor e.

Proposition 2.2.4 If the vector field D admits q exponential factors e1, · · · , eq and r alge-
braic inverse curves fj, (j = 1, · · · , r) then R =

∏q
i=1 emi

∏r
j=1 f

nj

j is an integrating factor
of the differential equation Pdx + Qdy = 0 if

D[R]

R
=

q∑
i=1

miLei
+

q∑
i=1

njLfj
= −(divD)

where Lfj
is the co-factor of fj

Proof: Let R =
∏q

i=1 emi
∏r

j=1 f
nj

j Therefore,

D[R]

R
= D

[
M

N

]
+

r∑
i=1

niLfi
= −(Qx + Py). (2.2.24)

Since Qx and Py are polynomials of degree at most (d−1) and Lfi
is also of maximum degree

(d− 1). So,

D

[
M

N

]
= Π, (2.2.25)

which is a polynomial of degree ≤ d− 1.
Consequently,

1

N
D[M ]− M

N

D[N ]

N
= Π

implies,

D[M ]−M
D[N ]

N
= ΠN. (2.2.26)

Here D[M ] and ΠN are polynomials since M and N are polynomials. However, M and N

being co-prime it follows that D[N ]
N

is a polynomial. Therefore, as far as the structure of

the unknown polynomial N goes, since D[N ]
N

is a polynomial, we can express N in terms of
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Darboux polynomials fi.
Let

N =

q∏
j=1

f
mj

j , (2.2.27)

so that,

D[N ]

N
=

q∑
j=1

mjLfj
, (2.2.28)

where mj is a positive integer. Substituting (2.2.25) in (2.2.24), we get

Π +
r∑

i=1

njLfi
= −(Qx + Py),

which implies

NΠ = −N(Qx + Py +
r∑

i=1

njLfi
). (2.2.29)

Using (2.2.27), (2.2.28) and (2.2.29) in (2.2.26) we have,

D[M ]−M

q∑
j=1

mjLfj
= −(

q∏
j=1

f
mj

j )(Qx + Py +
r∑

i=1

njLfi
). (2.2.30)

Thus we then have the following algorithm:
Step 1 : Calculate the Darboux polynomials for different order of polynomials.
Step 2 : Set bounds for the unknown polynomials M and N .
Step 3 : As the structure of N is known therefore with a preset bound of N there are only
a finite number of choices for the positive integers mj.
Step 4 : With a preset bound for M and knowledge of fk’s and possible finite number of
choices of mj, find the value of ni’s and coefficients of power of M from the above equation
which involves solving a system of linear equations.

Example 2.2.2

Let us consider the differential equation

dy

dx
=

(x + 1)y

x− xy − y2 + x2
. (2.2.31)

Here P = (x + 1)y and Q = x− xy− y2 + x2 so that D = (x− xy− y2 + x2) ∂
∂x

+ (x + 1)y ∂
∂y

Step 1 : The Darboux polynomials are found to be f1 = y and f2 = x + y while the
corresponding co-factors are Lf1 = x + 1 and Lf2 = 1 + x− y respectively.
Step 2 : For the determination of N we assume at first N is of degree 1. Since N = fm1

1 fm2
2

with f1 and f2 being of degree 1, we have just two possibilities {m1 = 0,m2 = 1} or
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{m1 = 1,m2 = 0}.
Step 3 : In this step we set a degree for M , starting with an M of degree 1 i.e., M =
a0 +a1x+a2y where ai, i = 0, 1, 2 are constants. Then D[M ] = a1Q+a2P and from (2.2.26)
with m1 = 0, m2 = 0 we have a1(x − xy − y2 + x2) − (a0 + a1x)(x + 1) = −y(2 − y +
3x + n1(x + 1)) + n2(1 + x− y). Equating now the coefficients of powers of x, y etc. we get
a0 = 0, a1 = 1, n1 = 0, n2 = −2 and a2 is arbitrary. Setting a2 = 0, we have N = y, M = x
finally. Therefore the integrating factor is R = ex/yf 0

1 f−2
2 = ex/y(1 + x− y)−2.

2.2.9 The Prelle-Singer (PS) method (1983)

The essence of the PS method is that whenever a vector field D associated with a first-order
ODE has an elementary first integral, the latter can be computed using only the invariant
algebraic curves by an almost algorithmic procedure [87]. Clearly, these first integrals may
be found by using the Darboux approach. The method is attractive because if the given
first-order ODE has a solution expressible in terms of elementary functions, then it guar-
antees that this solution can be found. The procedure depends upon the determination
of Darboux polynomials of the elementary functions occuring in the ODE. The principal
shortcoming of the PS method is that it does not specify the degree bound for the Darboux
polynomials. Consequently one has to set a degree bound for the Darboux polynomial a
priori and therefore it is a semi-algorithmic procedure. If it is possible to set a theoretical
degree bound for the Darboux polynomial in the PS method, then the method will clearly
become an algorithm.
If the first-order ODE, y′ = P/Q, possesses an elementary general solution then the solution
is of the form

I(x, y) = W0 +
∑
i>0

ci ln Wi

where W0, Wi are algebraic functions of (x, y).
• The one form ω = Pdx − Qdy admits an integrating factor such that Rk is a rational
function of (x, y) where

R =
∏

i

fni
i

Given an upper bound B on the Darboux polynomials one proceeds as follows:

• Step 1: Set current bound on the Darboux polynomials N = 1.

• Step 2: Search for irreducible polynomials fi such that deg fi ≤ N and fi|D(fi)

• Step 3: If there exists constants ni not all zero, such that
∑m

i=1 niλi = 0 then D[R]/R =
0 and the ODE is exact. The solution is I(x, y) =

∏m
i=1 fni

i = c. If no solutions for ni

exist then go the next step.
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• Step 4: if there exists constants ni not all zero, such that
∑m

i=1 niλi = −(Qx + Py) (so
that R =

∏
i f

ni
i ) then return the solution I(x, y) = c with

I(x, y) =

∫
RPdx−

∫
(RQ + ∂y

∫
RP )dy.

or

−
∫

RQdy +

∫
(RP + ∂x

∫
RQ)dx

• Step 5: Set N = N + 1. If N > B then exit with no result. Else go to Step 2

As stated earlier since no upper bound on the Darboux polynomials are known so the process
is a semi decisive one.

Example 2.2.3

The following example serves to illustrate the procedure.

dy

dx
= − x(1 + y)

y + x2 + y2

Here the vector field is D = (y + x2 + y2)∂x − x(1 + y)∂y and the Darboux polynomials

along with their cofactors are f1 = (1 + y), λ1 = −x f2 =
(
x2 + y2

2
+ y

3
− 1

6

)
, λ2 = 2x.

Consequently we have n1λ1 + n2λ2 = −(Qx + Py) = −x so that n1 = n2 = −1. The
integrating factor is therefore given by

R(x, y) = (1 + y)−1

(
x2 +

y2

2
+

y

3
− 1

6

)−1

and the solution is finally found to be the following:

I(x, y) = −1

2
ln

(
x2 +

y2

2
+

y

3
− 1

6

)
− ln(1 + y) = c

Our next example concerns the generalized Lotka-Volterra model.

Generalized Lotka-Volterra model

We focus on the following version of the Lotka-Volterra model, describing the population
dynamics of two competing species represented by x and y.
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Example 2.2.4

ẋ = x(a1 + a2x + a3y) and ẏ = y(b1 + b2x + b3y) (2.2.32)

The corresponding phase-flow is given by the equation:

dy

dx
=

y(b1 + b2x + b3y)

x(a1 + a2x + a3y)
. (2.2.33)

Here P (x, y) = y(b1 + b2x + b3y) and Q(x, y) = x(a1 + a2x + a3y) while

D[R] = (x(a1 + a2x + a3y)∂x + y(b1 + b2x + b3y)∂y)[R] = −(Qx + Py)R.

Notice that
D[x] = x(a1 + a2x + a3y) and D[y] = y(b1 + b2x + b3y)

which implies that the Darboux polynomials are:

(i) f1 = x, λ1 = (a1 + a2x + a3y)

(ii) f2 = y, λ2 = (b1 + b2x + b3y).

Thus

R =
∏

i

fni
i ⇒ D[R]

R
=

∑
i

ni
D[fi]

fi

= −(Qx + Py) (2.2.34)

where
Qx = a1 + 2a2x + a3y, and Py = b1 + b2x + 2b3y.

We are therefore left with the problem of finding rational numbers ni such that

n1(a1 + a2x + a3y) + n2(b1 + b2x + b3y) = −[(a1 + b1) + (2a2 + b2)x + (a3 + 2b3)y]. (2.2.35)

Equating the coefficients of the various powers on either side, leads to the following set of
equations:

n1a1 + n2b1 = −(a1 + b1)

n1a2 + n2b2 = −(2a2 + b2)

n1a3 + n2b3 = −(a3 + 2b3). (2.2.36)

A consistent solution of this set of equations is obtained by imposing the following constraints
on the parameters:

b1 = a1, b2 = 3a2, b3 = −a3 (2.2.37)

which yield

n1 = −1

2
and n2 = −3

2
.
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With these constraints on the parameters the Lotka-Volterra equation (2.2.32) becomes:

ẋ = x(a1 + a2x + a3y), and ẏ = y(a1 + 3a2x− a3y) (2.2.38)

and its integrating factor is given by

R = x−
1
2 y−

3
2 . (2.2.39)

If I(x, y) denotes a first integral of the equation, it follows that

Ix = (RP ) = x−
1
2 y−

1
2 (a1 + 3a3x− a3y)

Iy = −(RQ) = −x
1
2 y−

3
2 (a1 + a2x + a3y)

It is now a matter of straight forward integration to see that the first integral is

I(x, y) =
2x

1
2 (a1 + a2x− a3y)

y
1
2

. (2.2.40)

We should point out that while finding the first two Darboux polynomials is relatively
obvious, one may assume a third polynomial f3 = (αx+βy) and try to determine the values
of α, β such that f3 is a Darboux polynomial. The latter requires f3|D[f3], and occurs when
α = a2 and β = −a3; with the associated eigen polynomial being λ3 = (a1 + a2x − a3y).
Notice that λ3 is precisely the factor which occurs in our expression for the first integral
(2.2.40). This is because having obtained three Darboux polynomials, we can verify that
there exists a set of rational numbers (s1 = 1

2
, s2 = −1

2
, s3 = 1) such that D[I] = 0 where

I = f
1
2
1 f

− 1
2

2 f3.
We will now consider the special case of homogeneous vector fields.

2.2.10 Homogeneous vector fields

Consider the planar ODE
dy

dx
=

P (x, y)

Q(x, y)
(2.2.41)

when P and Q are homogeneous functions. The computation of Darboux polynomials for
such cases is considerably simplified by the following lemma due to Collins (1996) [18].

Lemma 2.2.1 Let D = Q(x, y) ∂
∂x

+ P (x, y) ∂
∂y

be a homogeneous vector field. If W =

xP (x, y)− yQ(x, y) does not vanish identically, then D[W ] = λW , so that W is a Darboux
polynomial for D and all irreducible homogeneous Darboux polynomials of D divide W .

Proof: Suppose P (x, y) and Q(x, y) are homogeneous functions of degree n. Therefore by
Euler’s theorem

x∂P
∂x

+ y ∂P
∂y

= nP

x∂Q
∂x

+ y ∂Q
∂y

= nQ.
(2.2.42)
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Therefore

D[W ] = D[xP (x, y)− yQ(x, y)] = D[x]P + xD[P ]−D[y]Q− yD[Q]

= PQ + x

(
Q

∂P

∂x
+ P

∂P

∂y

)
− PQ− y

(
Q

∂Q

∂x
+ P

∂Q

∂y

)

=

(
∂P

∂y
+

∂Q

∂x

)
(xP − yQ)− P

(
∂Q

∂x
+ y

∂Q

∂y

)
+ Q

(
x
∂P

∂x
+ y

∂P

∂y

)

=

(
∂P

∂y
+

∂Q

∂x

)
(xP − yQ)− p(nQ) + Q(nP ) [Using (2.2.42)]

=

(
∂P

∂y
+

∂Q

∂x

)
(xP − yQ) =

(
∂P

∂y
+

∂Q

∂x

)
W.

Therefore W is a Darboux polynomial and W divides D[W ].

It is interesting to note that when P (x, y) and Q(x, y) are homogenous functions of
odd degree then a necessary and sufficient condition for (2.2.41) to exhibit a closed cycle
about the origin is ∫ ∞

−∞

Q(1, u)

P (1, u)− uQ(1, u)
du = 0. (2.2.43)

This result is known as Frommer’s theorem [20]. However, a closed trajectory can also arise
in the case when P (x, y) and Q(x, y) are of even degree.

(a) Homogenous odd degree case:
We consider as our prototype example the following ODE:

dy

dx
=

x3 + ax2y + bxy2 + cy3

ax3 + bx2y + cxy2 − y3
(2.2.44)

By lemma 2.2.1 we find that

W = x4 + y4 = (x + eiθy)(x + e−iθy)(x + e3iθy)(x + e−3iθy) (2.2.45)

where θ = π
4
. Clearly each factor is also a Darboux polynomial and these along with their

cofactors are tabulated below:

(i) f1 = x + eiθy, λ1 = (a + eiθ)x2 + (b− e2iθ)xy + (c + e3iθ)y2,

(ii) f2 = x + e−iθy, λ2 = (a + e−iθ)x2 + (b− e−2iθ)xy + (c + e−3iθ)y2,

(iii) f3 = x− e−iθy, λ3 = (a− e−iθ)x2 + (b− e−2iθ)xy + (c− e−3iθ)y2,

(iv) f4 = x− eiθy, λ4 = (a− eiθ)x2 + (b− e2iθ)xy + (c− e3iθ)y2.
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The relation (2.2.22) then yields

D[R]

R
=

∑
i

ni
D[fi]

fi

=
∑

i

niλi = −(Qx + Py) = −4(ax2 + bxy + cy2), (2.2.46)

from which it follows that n1 = n2 = n3 = n4 = −1 and hence a requisite integrating factor
of the equation is

R = (x + eiθy)−1(x + e−iθy)−1(x− e−iθy)−1(x− eiθy)−1. (2.2.47)

It may then be verified that

I(x, y) =
1

2

(
1 +

c− a√
2

)
ln

√(
x +

y√
2

)2

+
y2

2
+

1

2

(
1− c− a√

2

)
ln

√(
x− y√

2

)2

+
y2

2

+
1

2

(
b− c + a√

2

)
tan−1

(
y√

2x + y

)
− 1

2

(
b +

c + a√
2

)
tan−1

(
y√

2x− y

)
= constant

(2.2.48)
is the solution of (2.2.44).

(b)Homogeneous even degree case:
We consider the following homogenous second degree system of equations:

dx

dt
= −2xy,

dy

dt
= x2 − y2, (2.2.49)

which may alternatively be expressed as

dy

dx
=

x2 − y2

−2xy
. (2.2.50)

In a manner similar to that described in the previous example it is found that

R =
1

x(x + iy)(x− iy)
, (2.2.51)

is an integrating factor of this equation. The corresponding logarithmic first integral is easily
obtained as

φ(x, y) = log

(
x2 + y2

x

)
. (2.2.52)
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2.3 Time dependent first integrals and non-planar dy-

namical systems:

In the previous section we have basically outlined the Prelle-Singer procedure for planar
vector fields when the first integrals are not explicitly time dependent.
Here we consider a non-planar dynamical system given by

dxi

dt
= Xi(t, x1, x2, . . . , xn), i = 1, · · · , n. (2.3.1)

The procedure for finding time dependent first integrals may be presented in the form of the
following algorithm [63]:

1. Step 1 Set N=1.

2. Step 2 Find all monic irreducible polynomials gα with degree ≤ N such that gα

divides D̃[gα] where D̃ := ∂
∂t

+
∑

i Xi
∂

∂xi
.

3. Step 3 Let D̃[gα] = gαλα and decide if there are constants nα, not all zero such that∑
α nαλα = r, where r ∈ R. If such nα’s exist then e−rt

∏
α gnα

α is a first integral.

The last conclusion follows from the following observation. If

R = e−rt
∏
α

gnα
α then log R = −rt +

∑
α

nα log gα (2.3.2)

then
D̃[R]

R
= −rD̃[t] +

∑
α

nα
D̃[gα]

gα

= −r +
∑

α

nα
D[gα]

gα

, (2.3.3)

since it is assumed that gα is not explicitly time dependent. Next the assumption gα’s are
Darboux polynomials ensures that gα|D[gα] = λα is a polynomial and hence

D̃[R]

R
= −r +

∑
α

nαλα. (2.3.4)

Thus if there exists rational numbers such that
∑

α nαλα = r then D̃[R]
R

= 0 and hence the
system is exact, so that the integrating factor R is itself a first integral.
As to the nature of the integrating factor when

∑
α nαλα 6= r, to the best of our knowledge

is not clear what the next step of the above algorithm should be.
The following example which is a variant of the Hindmarsh-rose model [93] serves to illustrate
the above algorithm.

Example 2.3.1
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The Hindmarsh-Rose model consists of a system of three autonomous differential equations,
with mild nonlinearities for modelling neurons that exhibit triggered firing. The usual form
of the equations are:

ẋ = y + φ(x)− z − I

ẏ = ψ(x)− y (2.3.5)

ż = r(s(x− xR)− z)

where φ(x) = ax2 − x3 and ψ(x) = 1 − bx2. Here I is a control parameter, while of the
remaining five parameters s and xR are usually fixed. Let us re-write them in the following
form appending two extra parameters to the functions φ(x) and ψ(x).

ẋ = y − z − ax3 + bx2 + α

ẏ = β − dx2 − y

ż = px− rz − γ. (2.3.6)

We thus have a total of eight parameters given by α, β, γ, a, b, d, p and r.
A list of first integrals for specific parameter values of the system (2.3.6) is given below:
I. For p = 0, I = (rz + γ)ert.

II. d = 0 then I = (y − β)et.

III. For arbitrary values of d, β, γ and a = 0, b = −d, p = −2, α = β + γ and r = 1,

I = e2t(x− y + z)

IV. For arbitrary values of α, γ, p and b and when a = 0, d = 2b, r = −(p+1), β = 2(γ
p
−α)

we find that

I =
et

2x + y + 2z
p

.

Unfortunately we have not been able to find a first integral with a 6= 0 which is the
dominant nonlinear term here. Notice may be taken of the presence of the time t in all the
above first integrals.
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2.4 Fixed point and Phase-Plane Analysis

Since a lot of information concerning a differential system can be called from an analysis of
the system in the phase plane we consider an autonomous planar nonlinear system in the
standard form

ẋ = P (x, y), ẏ = Q(x, y) , (2.4.1)

where P and Q are nonlinear functions of x and y. It is interesting to note that, all ODEs
arising from Newton’s second law of motion, namely ẍ = F (x, ẋ), where F is the forcing
term, may be put in the standard form

ẋ = y ≡ P, ẏ = F (x, y) ≡ Q. (2.4.2)

Definition 2.4.1 The points in the x − y plane (i.e. the phase plane) where ẋ = 0 and
ẏ = 0 are called fixed points.

These points are also known as the stationary points, i.e., they represent the points of
intersect of the graphs of

P (x, y) = 0, Q(x, y) = 0. (2.4.3)

and are found by solving the simultaneous nonlinear equations

P (x, y) = 0, Q(x, y) = 0. (2.4.4)

If P (x, y) and Q(x, y) are nonlinear functions then obviously there can exist more than one
fixed point for a given system.

Example 2.4.1 Consider the autonomous ODE

ẋ = y
ẏ = −(1 + y)(x + x2)

. (2.4.5)

Here P (x, y) = y and Q(x, y) = −(1 + y)(x + x2). By solving (2.4.4) with these functions
we find there are two fixed points at (0,0) and (-1,0) respectively.

The behavior of the solution curve or trajectory in the neighbourhood of the fixed
points in the phase plane exhibits a number of features. Since P and Q do not explicitly
depend upon the time t, it can be eliminated by dividing the two equations in (2.4.1) and
we have

dy

dx
=

Q(x, y

P (x, y)
, (2.4.6)

which is the slope of the trajectory at an arbitrary point (x, y) in the phase plane. Since at
the fixed point P = Q = 0, we have dy/dx = 0/0 and therefore the slope is indeterminate.
At all other points the slope has a unique value in between 0 and ∞. Points other than
fixed points are called ordinary points. As time advances the solution will advance along the
trajectory determined by the initial values of x and y.
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Tangent Field:

Graphically one can see all possible trajectories of the standard ODE by sketching a tangent
field. Thus is done by forming a systematic grid in the phase plane, the ratio Q(x, y)/P (x, y)

is then calculated at each grid point. A small arrow with slope dy
dx

= Q(x,y
P (x,y)

is then drawn
at each grid point i.e., tangent to the trajectory at that grid point. The arrowhead should
point in the direction of increasing t.

Vortex point:

If the tangent field arrows form a counter clockwise whirlpool or vortex around a fixed point
then the fixed point are called vortex point.
The behavior of the tangent field arrows in the figure 2.1 imply that the only possible physical
solution are cyclical.

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y(t)

–1.5 –1 –0.5 0.5

x(t)

Figure 2.1: Phase portrait of the example 2.4.1

Saddle point:

If the tangent field arrows point away from the fixed point along the horizontal x-axis and
point towards it along the vertical y-axis then this type of a fixed point is called a saddle
point.
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The name arising from analogy with a saddle point at the pass between two neighbouring
mountain peaks with two valleys in the transverse direction. In the mountain situation,
increasing height plays the role of increasing time. To represent the direction of increasing
height, two arrows point away from the mountain away from the mountain saddle point to
the peaks and two arrows point towards the saddle point as one ascends the pass from the
valleys.

2.4.1 Linearization technique:

Let us now systematically identify the types of fixed points. Suppose (x0, y0) to be a fixed
point. If the fixed point (x0, y0) 6= (0, 0), then by a translation u = x − x0 and v = y − y0,
we have a new system with (0,0) as a fixed point. So, henceforth we shall assume (0,0) as
a fixed point. So that P (0, 0) = Q(0, 0) = 0. Therefore. by Taylor’s expansion about the
fixed point we can express the functions P and Q by

P (x, y) = ax + by + R(x, y), Q(x, y) = cx + dy + S(x, y), (2.4.7)

where R(x, y) = O(r2) and S(x, y) = O(r2) as r =
√

x2 + y2 → 0, and

a =
∂P

∂x
|(0,0), b =

∂P

∂y
|(0,0), c =

∂Q

∂x
|(0,0), d =

∂Q

∂y
|(0,0) . (2.4.8)

The linear approximation in the neighbourhood of the origin is therefore the pair of linear
ODEs.

ẋ = ax + by
ẏ = cx + dy

. (2.4.9)

Assuming a nontrivial solution of (2.4.9) of the form x = reλt and y = seλt, where r, s are
real constants and λ is a either real or complex constant, we have upon substitution in (2.4.9)

(a− λ)r + bs = 0
cr + (d− λ)s = 0

. (2.4.10)

A non-trivial solution exists if and only if

a− λ b
c d− λ

= 0, (2.4.11)

which implies a quadratic equation in λ, namely

λ2 + pλ + q = 0, (2.4.12)

where p = −(a + d) and q = ad− bc.
Therefore, we obtain two roots

λ± = −p

2
± 1

2

√
p2 − 4q. (2.4.13)
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Note that, if q = 0, the roots λ+ = 0 and λ− = −p. In this case, higher-order terms in the
Taylor expansion should be kept. For this reason, q = 0 corresponds to a higher-order fixed
point. The fixed points which occurs for q 6= 0 are called simple. A detailed examination
of the roots for this case shows that there are only four type of simple fixed points, saddle,
focal or spiral, nodal and vortex point [47].
The range of q, p and p2 − 4q dictates the type of a fixed point and in case of the focal and
nodal points, its stability. The following table summarizes the various possibilities:

Fixed point q = ad− bc p = −(a + d) p2 − 4q
Saddle < 0 for all p > 0

Higher-order = 0 for all p ≥ 0
Stable focal > 0 > 0 < 0
Stable nodal > 0 > 0 ≥ 0

Vortex or focal > 0 = 0 < 0
Unstable focal > 0 < 0 < 0
Unstable nodal > 0 < 0 ≥ 0

. (2.4.14)

While the above table serves to furnish a rough idea of the phase space behavior of the
system, it should be noted that, for q > 0, p = 0 the fixed point is either a vortex or a focal
point. The uncertainty arises because of the neglect of higher-order terms in the Taylor
expansion which may turn a closed loop into a spiral (for the vortex). In this context the
following theorem due to Poincaré’s is useful.

Theorem 2.4.1 Poincaré’s Theorem:
If P (x,−y) = −P (x, y) and Q(x,−y) = Q(x, y) then the fixed point is a vortex and is not a
focal point.

Example 2.4.2

Consider the differential equation

ẍ + x− 2x2 + x3 = 0, (2.4.15)

which may be written in the form

ẋ = y
ẏ = −x + 2x2 − x3 . (2.4.16)

Here P (x, y) = y and Q(x, y) = −x(1 − x)2. The fixed points are (0,0) and (1,0). For the
fixed point at the origin, a = 0, b = 1, c = −1, d = 0, so that p = −(a + d) = 0, q =
ad− bc = 1 > 0. Therefore, the origin is either a focal or a vortex point.
Applying Poincaré’s theorem we find that

P (x,−y) = −y = −P (x, y)
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Q(x,−y) = −x(1− x)2 = Q(x, y).

Therefore it follows that the fixed point at the origin is a vortex point.
For the fixed point (1,0), we have a = 0, b = 1, c = 0, d = 0. Then p = 0 and q = 0. So the
fixed point (1,0) is a higher-order fixed point.

In this section we have attempted to give a brief introduction to ODEs especially to
the notion of first integrals and there evaluation and have highlighted some of there essential
features as are relevant to the subsequent chapters. Now we will consider another important
aspect of the analysis of ODEs namely that of Lie Symmetries.
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2.5 Lie Symmetry

2.5.1 Symmetry of Nonlinear Differential Equations

Before trying to understand what we mean by a symmetry of an ODE, it is perhaps more
appropriate to introduce the notion of symmetry for simple geometric objects, for which we
have an intuitive sense.
Consider, for example, an equilateral triangle. If we rotate the triangle about its center by
2π/3 in the anticlockwise sense, then after rotation the triangle is indistinguishable from
the one we started with. This look alikeness is at the heart of symmetry. Further rotations
by 4π/3 and 2π also leave the original triangle unchanged. Again if we reflect the triangle
about the medians then also it remains invariant. In fact anything which reflects invariance
under a transformation indicates that the object with that property is actually simpler than
it looks.

2.5.2 The Basic ideas

We say that a transformation is a symmetry if it satisfies the following conditions:
(a) The transformation is structure preserving.
(b) The transformation is a diffeomorphism, i.e., a smooth invertible mapping whose inverse
is also smooth.
(c) The transformation maps the object to itself.
The last requirement is the one which we normally have in mind when discussing about
symmetry.

Consider a unit circle, x2 + y2 = 1, made of any rigid material. Being of rigid nature,
the distance between any two points on the circle is fixed. However, if the circle were to be
made of any elastic material such as rubber, then we could have deformed it, in which case
the distance between points on the circle, could vary. Next consider a transformations given
by

Γε : (x, y) 7→ (x̂, ŷ) = (x cos ε− y sin ε, x sin ε + y cos ε)

for each ε ∈ (−π, π]. In terms of polar coordinates this transformation is

Γε : (cos θ, sin θ) 7→ (cos (θ + ε), sin(θ + ε)).

Such a transformation preserves the structure and is smooth and invertible. It is geometri-
cally just a rotation by ε about the center of the circle. (The inverse of a rotation by ε is
just a rotation by −ε.)
Finally x̂2 + ŷ2 = x2 + y2 = 1, in other words the transformation maps the unit circle to
another unit circle.
Since Γε is defined for all values of ε ∈ (−π, π], we have here an example of an infinite set of
symmetries.
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2.5.3 One parameter group of Transformation

Let us consider an appropriate change of variables from (x, y) to (x̃, ỹ) given by

x̃ = x̃(x, y), ỹ = ỹ(x, y). (2.5.1)

This will be called a point transformation.
In the context of symmetries we have to consider point transformations which depend upon
at least one arbitrary parameter ε so that

x̃ = x̃(x, y; ε), ỹ = ỹ(x, y; ε), (2.5.2)

subject to the condition
x̃(x, y; 0) = x, ỹ(x, y; 0) = y. (2.5.3)

It is assumed that x̃(x, y; ε) and ỹ(x, y; ε) are functionally independent i.e., their Jacobian

J :=
x̃x x̃y

ỹx ỹy
6= 0. (2.5.4)

In view of this condition the transformations are invertible and therefore repeated appli-
cations yield a transformation of the same family. The transformation (2.5.2) with these
properties form a one-parameter group of point transformation.
A simple example of a one-parameter group is given by the rotation

x̃ = xcosε− ysinε, ỹ = xsinε + ycosε. (2.5.5)

However a reflection for which, x̃ = −x and ỹ = −y, does not form a one parameter group
even though it is a point transformation.

2.5.4 Group generator and the Lie equation

An infinitesimal transformation is an infinitesimal deformation from the identity and can be
represented as

x̃(x, y; ε) = x + εξ(x, y) + · · · = x + εXx + · · · (2.5.6)

ỹ(x, y; ε) = y + εη(x, y) + · · · = y + εXy + · · · , (2.5.7)

For the case of two variables x and y the vector field X is defined by

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
(2.5.8)

where the functions ξ and η are defined by

ξ(x, y) =
∂x̃

∂ε

∣∣∣
ε=0

, η(x, y) =
∂ỹ

∂ε

∣∣∣
ε=0

. (2.5.9)
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Although we have restricted the number of variables to two for the purposes of clarity of
presentation there can be any number of variables. The ε is the parameter of smallness and
it is normal to ignore higher powers in this parameter.
From (2.5.8) it follows that the components of the tangents vectors are exactly ξ and η.
The operator X is called the infinitesimal generator of the point transformation. The term
generator indicates that the repeated application of the transformation will generate the
finite transformation, which expresses the fact that the integral curves of the vector field X
are the group orbits.
Given an infinitesimal transformation (2.5.6) and (2.5.7) or the generators of the trans-
formation (2.5.8) are obtained by integrating the following system of ordinary differential
equations called the Lie equations :

dx̃

dε
= ξ(x̃, ỹ), x̃|ε=0 = x, (2.5.10)

dỹ

dε
= η(x̃, ỹ), ỹ|ε=0 = y. (2.5.11)

Example 2.5.1

For the rotation (2.5.5) in the x− y plane, we have

∂x̃

∂ε

∣∣∣
ε=0

= −y,
∂ỹ

∂ε

∣∣∣
ε=0

= x. (2.5.12)

Therefore the corresponding generator is X = −y ∂
∂x

+ x ∂
∂y

. One can easily verify that the
Lie equations are satisfied since

dx̃
dε

= −y, x̃
∣∣∣
ε=0

= x,

dỹ
dε

= x, ỹ
∣∣∣
ε=0

= y.
(2.5.13)

Example 2.5.2

The inverse problem is to find the finite transformation when the generator is given. Suppose
X = x2 ∂

∂x
+ xy ∂

∂y
. The Lie equations (2.5.10) have the form

dx̃
dε

= x̃2, x̃
∣∣∣
ε=0

= x,

dỹ
dε

= x̃ỹ, ỹ
∣∣∣
ε=0

= y.
(2.5.14)

Solving the above system of differential equations we have, x̃ = − 1
ε+C1

, ỹ = C2

ε+C1
. Applying

the initial conditions we find that C1 = −1/x and C2 = −y/x. Consequently we arrive
at the following one parameter group:

x̃ =
x

1− εx
, ỹ =

y

1− εx
. (2.5.15)

Next we present certain basic definitions.
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Definition 2.5.1 (Orbit of the group)

The orbit of the group through (x, y) is the set of points (x, y) which can be mapped by a
suitable choice of ε. The orbit through a typical point is a smooth curve.
The points each of which are mapped to itself by the Lie symmetries are called invariant
points. An invariant point is a zero-dimensional orbit of the Lie group and are the fixed
points of the flow.

Definition 2.5.2 (Invariants)

A function I(x, y) is called an invariant of the group of transformations (2.5.2) if the following
condition holds:

I(x̃, ỹ) = I(x̃(x, y, ε), ỹ(x, y, ε)) = I(x, y). (2.5.16)

Theorem 2.5.1

A necessary and sufficient condition for a function I(x, y) to be an invariant is that it solves
the following partial differential equation:

X(I) = ξ(x, y)
∂I

∂x
+ η

∂I

∂y
= 0. (2.5.17)

Proof: The necessary condition follows from the Taylor expansion of I(x, y) with respect to
ε:

I(x̃, ỹ) ≈ I(x+ εξ, y + εη) ≈ I(x, y)+ ε
(
ξ(x, y)

∂I

∂x
+ η(x, y)

∂I

∂y

)
= I(x, y)+ εX(I). (2.5.18)

Since I(x, y) is invariant, we have I(x̃, ỹ) = I(x, y). Using this relation we have from the
above equation εX(I) = 0 and hence X(I) = 0. For sufficiency, if we substitute X(I) = 0
in (2.5.18) we have I(x̃, ỹ) = I(x, y). So, I(x, y) is invariant.

Definition 2.5.3 (Characteristic)

If X = ξ(x, y) ∂
∂x

+ η(x, y) ∂
∂y

be a symmetry generator then we define Q(x, y, y′) = η(x, y)−
y′ξ(x, y), as the characteristic. If C is the curve y = y(x), the tangent to C in the direction
(1, y′(x)), is parallel to (ξ(x), η(x)) if and only if

Q(x, y, y′) = 0 on C.

Every one-parameter group of point transformation in the plane has one independent in-
variant, which can be taken to be the left hand side of any first integral φ(x, y) = C of the
characteristic equation:

dx

ξ(x, y)
=

dy

η(x, y)
. (2.5.19)

Any other invariant has the form I(x, y) = F (φ(x, y)).
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Definition 2.5.4 (Canonical coordinates)

Every one-parameter group of transformation (2.5.2) with the generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, (2.5.20)

can be reduced to the group of translation r̃ = r, s̃ = s + ε with generator

X̃ =
∂

∂s
, (2.5.21)

by introducing new variables r = r(x, y) and s = s(x, y). We call (2.5.21) the normal form
of the generator X. For the new coordinates, the tangent vector at the point (r, s) is (0, 1),
i.e.,

∂r̃

∂ε

∣∣∣
ε=0

= 0,
∂s̃

∂ε

∣∣∣
ε=0

= 1. (2.5.22)

Using the chain rule and (2.5.10) we obtain

ξ(x, y)rx + η(x, y)ry = 0
ξ(x, y)sx + η(x, y)sy = 1.

(2.5.23)

The change of coordinates should be invertible in some neighbourhood of (x, y). So, we
impose the non-degeneracy condition

rx ry

sx sy
6= 0. (2.5.24)

This condition ensures that if a curve of constant s and a curve of constant r meet at a
point, they cross one another transversely. Any pair of functions r(x, y) and s(x, y) satisfying
(2.5.22) and (2.5.24) is called a pair of canonical coordinates.

2.5.5 Extension of transformations and their generators:

Next we will describe the application of point transformations (2.5.2) on a differential equa-
tion

E(x, y, y′, y′′, · · · , y(n)) = 0, y(k) ≡ dky

dxk
, k = 1, · · · , n (2.5.25)

and also explain how to extend (or prolong) the point transformation to transform the
derivatives y(k), (k = 1, · · · , n) appearing in the equation.
This is accomplished by defining,

ỹ′ =
dỹ

dx̃
=

dỹ(x, y; ε)

dx̃(x, y; ε)
=

y′(∂ỹ
∂y

) + ( ∂ỹ
∂x

)

y′(∂x̃
∂y

) + (∂x̃
∂x

)
= ỹ′(x, y, y′; ε), ỹ′′ =

dỹ′

dx̃
= ỹ′′(x, y, y′, y′′; ε), etc;

(2.5.26)
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Now, the extension of the infinitesimal generator X in (2.5.6) given by

ỹ′(x, y; ε) = y + εη1(x, y, y′) + O(ε2) = y′ + εXy′ + O(ε2), (2.5.27)

...

ỹ(n)(x, y; ε) = y(n) + εη(n)(x, y, y′, · · · , y(n)) + O(ε2) = y + εXy(n) + O(ε2). (2.5.28)

where η1, η2, . . . , η(n) are defined by

η1 =
∂ỹ′

∂ε

∣∣∣
ε=0

, . . . , η(n) =
∂ỹ(n)

∂ε

∣∣∣
ε=0

. (2.5.29)

Inserting the expressions (2.5.27) and (2.5.28) into (2.5.26), we obtain

ỹ′ = y′ + εη(1) + O(ε2) =
dỹ

dx̃
=

dy + εdη + O(ε2)

dx + εdξ + O(ε2)
=

y′ + ε dη
dx

+ O(ε2)

1 + ε dξ
dx

+ O(ε2)
= y′ + ε

(dη

dx
− y′

dξ

dx

)
+ O(ε2),

Similarly,

ỹ(k) = y(k) + εη(k) + O(ε2) =
dỹ(k−1)

dx̃
= y(k) + ε

(dη(k−1)

dx
− y(k) dξ

dx

)
+ O(ε2),

k = 2, ..., n (2.5.30)

From the above equations we can find

η(1) =
dη

dx
− y′

dξ

dx
=

∂η

∂x
+ y′

(∂η

∂y
− ∂ξ

∂x

)
− y′2

∂ξ

∂y
, (2.5.31)

η(k) =
dη(k−1)

dx
− y(k) dξ

dx
, k = 2, ..., n. (2.5.32)

The last recursion formula can also be written as

η(k) =
d

dx
η(k−1) − y(k) dξ

dx
, k = 1, 2, ... (2.5.33)

The derivatives η(k) are called the kth-order prolongations of the vector field X = ξ∂x + η∂y

and satisfy the recursion relation (2.5.33) which may also be expressed in terms of the
characteristics by the following formula

η(k) =
dkQ

dxk
+ y(k+1)ξ, k = 0, 1, .... (2.5.34)

With these preliminary concepts we are now ready to formally define the symmetry condition
for a ODE.
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Definition 2.5.1 A differential equation E(x, y, y′, ..., y(n)) = 0 possesses a symmetry X =
ξ∂x + η∂y, if X(n)E = 0 when E = 0 has a nontrivial solution, where X(n) denotes the n-th
prolongation of X. The latter being defined by

X(n) = ξ∂x + η∂y + η(1)∂y′ + · · ·+ η(n)∂y(n) . (2.5.35)

Note that the symmetry condition X(n)E|E=0 = 0, represents a linear partial differential
equation which has to be solved for the coefficient functions ξ and η. Moreover we have
considered the simplest case of one independent variable and one dependent variable and
point transformations. The number of dependent variables can be increased and this requires
a corresponding increase in the number of equations which should equal the number of
dependent variables.

Definition 2.5.5 (Symmetry group)

The group of transformation (2.5.2) is called a symmetry group of an ordinary differential
equation

dy

dx
= ω(x, y) (2.5.36)

if the form of the differential equation remains invariant under the symmetry transformation
(2.5.2) so that

dỹ

dx̃
= w(x̃, ỹ) (2.5.37)

The definition being that same for higher-order equations. A symmetry group of a differential
equation is also termed as group admitted by this equation. The generator X of a group
admitted by a differential equation is also called an admitted operator of the equation.

2.5.6 ODEs and their equivalent first-order PDEs

Corresponding to an nth-order ordinary differential equation, there always exists an equiv-
alent first-order linear partial differential equation in n + 1 variables. Suppose we are given
a first order ODE dy

dx
= w(x, y). If φ(x, y) = c be its solution, we must have

dφ =

(
∂

∂x
+ w(x, y)

∂

∂y

)
φ = 0.

In other words the given ODE is equivalent to the partial differential equation Af = 0 where

Af =

(
∂

∂x
+ w(x, y)

∂

∂y

)
f = 0 ⇔ dy

dx
= w(x, y).

To understand the nature of the equivalence in the general case, suppose our nth-order ODE
is written as

y(n) = w(x, y, y′, ..., y(n−1)) (2.5.38)
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and let us assign to it the following partial differential equation (PDE) in n + 1 variables

Af =

(
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · ·+ w

∂

∂y(n−1)

)
f = 0. (2.5.39)

Here the quantities y′, y′′, ..., y(n−1) are treated as independent variables and have the same
status as x and y. If I = I(x, y, y′, ..., y(n−1)) is a first integral of the ODE then

d I

dx
=

∂I

∂x
+ y′

∂I

∂y
+ y′′

∂I

∂y′
+ · · ·+ w

∂I

∂y(n−1)
= 0, (2.5.40)

where we have used the fact that on the solution curves of the given ODE, y(n) = w. One
can invert the relation I(x, y, y′, ..., y(n−1)) = I0, a constant, and solve for y(n−1) to obtain

y(n−1) = u(x, y, ..., y(n−2); I0) (2.5.41)

provided Iy(n−1) 6= 0. This shows that the existence of a first integral causes a reduction in
the order of the ODE by one. Comparison of (2.5.39) with the definition of the first integral
(2.5.40) shows that every solution fα of Af = 0 is a first integral I of the ODE y(n) = w and
conversely.
Finally, every complete set of n functionally independent solutions φα of the PDE Af = 0
corresponds to the general solution y = y(x, φα) of the ODE, obtained through elimination
of all the derivatives of y from the system

φα(x, y, y′, ..., y(n−1)) = φα
0 , α = 1, ..., n.

Thus φα
0 essentially represent the constants of integration.

2.5.7 Determination of a Lie point symmetry

Given a general first-order ODE
dy

dx
= w(x, y).

It may be recast as E(x, y, y′) = y′ − w(x, y) = 0. If X = ξ∂x + η∂y denotes a symmetry
generator of this equation then the prolonged generator is given by X(1) = ξ∂x+η∂y +η(1)∂y′ .
Alternatively, if we proceed in the same spirit as earlier then we find that

dỹ

dx̃
=

y′ + ε(ηx + y′ηy)

1 + ε(ξx + y′ξy)
= y′ + ε{(ηx + y′ηy)− y′(ξx + y′ξy)}+ · · · .

The first-order term in ε may be written in the following suggestive manner,

η(1) :=
dη

dx
− y′

dξ

dx
.

In other words
dỹ

dx̃
= ỹ′ = y′ + εη(1) + · · · .
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On the other hand for the function on the right hand side we have by a Taylor series expansion

w(x̃, ỹ) = w(x, y) + ε(ξwx + ηwy) + O(ε2).

However, as y′ = w(x, y) it follows that

ηx + w(ηy − ξx)− w2ξy = ξwx + ηwy, (2.5.42)

where we have used the expanded expression for η(1). In terms of the characteristic

Q = η − wξ,

the expression (2.5.42) may be recast as

Qx + wQy = wyQ. (2.5.43)

The same result is obtained by a direct application of X(1) to E since,

X(1)E = ξ(−wx) + η(−wy) + η(1) = 0,

implies upon using the expanded form of η(1) and the original ODE

ηx + w(ηy − ξx)− w2ξy = ξwx + ηwy.

For the nth-order ODE
y(n) = w(x, y, y′, · · · , y(n−1)) (2.5.44)

the linearized symmetry condition (LSC) is

ỹ(n) = w(x̃, ỹ, ỹ′, · · · , ỹ(n−1)) on y(n) = w. (2.5.45)

First-order expansions give

y(n) + εη(n) = w(x + εξ, y + εη, y′ + εη(1), · · · , y(n−1) + εη(n−1))

or
η(n) = ξwx + ηwy + η(1)wy′ + · · ·+ η(n−1)wy(n−1) . (2.5.46)

In terms of the characteristics, Q = η − y′ξ, this condition may be written as

AnQ− wy(n−1)An−1Q− · · · − wy′AQ− wyQ = 0. (2.5.47)
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Example 2.5.1

Consider a second-order ODE

y′′ =
1

y3
.

Writing the ODE in the form
E = y3y′′ − 1 = 0

we have upon applying the prolonged operator X(2) = ξ∂x + η∂y + η(1)∂y′ + η(2)∂y′′ to E the
following condition

3y′′η + yη(2) = 0.

Substituting y′′ = y−3 and using the formula for η(2), the expanded form of the symmetry
condition reads

3

y3
η + y

[
−y′3ξxx + y′2(ηyy − 2ξxy) + y′(2ηxy − ξxx − 3

y3
ξy) + (ηxx +

1

y3
ηy − 2

y3
ξx)

]
= 0.

Equating the various powers of y′ then gives the following system of equations:

ξxx = 0, ηyy − 2ξxy = 0, 2ηxy − ξxx − 3

y3
ξy = 0,

3

y
η + yηxx +

1

y2
ηy − 2

y2
ξx = 0.

From the first of these we obtain

ξ(x, y) = a(x)y + b(x)

where a(x) and b(x) are to be determined. From the second it follows, upon using the above
expression for ξ, that

η(x, y) = a′(x)y2 + c(x)y + d(x).

Substituting these expressions for ξ and η into the third equation leads to the equation

3a′′(x)y + 2c′(x)− b′′(x) = 3a(x)
1

y3
.

By equating coefficients of the different powers of y we conclude that

a(x) = 0 c′(x) =
1

2
b′′(x),

whence it follows that c(x) = 1
2
b′(x) + λ, where λ is a constant. Therefore the general forms

of ξ and η are given by ξ = b(x) and η = c(x)y+d(x). Finally, using these expressions in the
last equation leads to the conclusion that d(x) = 0 and λ = 0 together with c′′(x) = 0 which
implies c(x) = αx + β where α and β are arbitrary constants. On the other hand from this
expression for c(x) it is easy to deduce that b(x) = αx2 + 2βx + γ where γ is also another
arbitrary constant. Hence

ξ = αx2 + 2βx + γ and η = (αx + β)y
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so that
X = (αx2 + 2βx + γ)∂x + (αx + β)y∂y = αX3 + βX2 + γX1

where in the last step we have purposely written X as a linear combination of the basic
symmetry generators Xi (i = 1, 2, 3). Thus the given ODE admits a set of three symmetries
which are given by

X1 = ∂x X2 = 2x∂x + y∂y and X3 = x2∂x + xy∂y.

2.5.8 An alternative formulation of the symmetry condition

We have already mentioned that an nth-order ODE, y(n) = w(x, y, y′, ..., y(n−1)), is equivalent
to the linear PDE

Af =

(
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · ·+ w

∂

∂y(n−1)

)
f = 0, (2.5.48)

and furthermore any Lie point symmetry that may exists can be determined from a knowledge
of the prolonged generator of the transformation,

X(n−1) = ξ
∂

∂x
+ η

∂

∂y
+ η(1) ∂

∂y′
+ · · ·+ η(n−1) ∂

∂y(n−1)

where η(k)’s denote the k-th prolongation of the infinitesimal generator. It is natural to
inquire about the conditions under which the prolonged generator represents a symmetry of
the PDE and, by equivalence, of the corresponding ODE. Consider a set of n independent
solutions fα of (2.5.48). Since a symmetry by definition has to map solutions into solutions;
it follows that if fα is a solution, then

X(n−1)fα = Gα(fβ), Afα = 0 = AGα, (2.5.49)

the last part follows from the fact the any function G of the solutions is also a solution. One
may now eliminate the functions Gα by constructing the commutator of X(n−1) and A,
[
X(n−1), A

]
= X(n−1)A− AX(n−1)

= −(Aξ)
∂

∂x
+

[
(X(n−1)y′)− (Aη)

] ∂

∂y
+ · · ·+ [

(X(n−1)w)− (Aη(n−1))
] ∂

∂y(n−1)

(2.5.50)

and is a linear operator like X(n−1) and A. In view of (2.5.49) this commutator vanishes,
since [

X(n−1), A
]
fα = X(n−1)(Afα)− A(X(n−1)fα) = 0.

Since this must hold for all functions fα, the equation
[
X(n−1), A

]
f = 0 has the same set

of solutions as the equation Af = 0, and therefore these operators can only differ by a non
constant factor g: [

X(n−1), A
]

= g(x, y, ..., y(n−1))A. (2.5.51)
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When the condition (2.5.51) is satisfied by the prolonged operator X(n−1), we say that it
defines a symmetry of Af = 0.

Example 2.5.2

It will be recalled that for the ODE, y′′ = w = 1/y3, the symmetry generators were found
to be

X1 = ∂x, X2 = 2x∂x + y∂y, X3 = x2∂x + xy∂y.

Since this is a second-order ODE we need to construct only the first-order prolongations of
these generators, i.e., X

(1)
k = X + η(1)∂y′ . Simple calculations show that

X
(1)
1 = ∂x, X

(1)
2 = 2x∂x + y∂y − y′∂y′ , X

(1)
3 = x2∂x + xy∂y + (y − xy′)∂y′ ,

respectively. On the other hand the ODE is equivalent to

Af =

(
∂x + y′∂y +

1

y3
∂y′

)
f = 0.

In order to calculate the commutator [X(1), A] we shall make use of (2.5.50). For instance in
case of X2 we have

ξ = 2x, η = y η(1) = −y′ so that Aξ = 2, Aη = y′ and Aη(1) = − 1

y3
.

On the other hand

X
(1)
2 y′ = −y′, X

(1)
2 w = X

(1)
2

1

y3
= − 3

y3
.

Therefore we find that

[
X

(1)
2 , A

]
= −2

[
∂x + y′∂y +

1

y3
∂y′

]
= −2A.

2.5.9 Algebra of Symmetry Generators:

A key feature of the symmetry generators is that they form an algebra under the operation of
a Lie Bracket. Symmetries are differential operators and one can calculate their Lie brackets.
For any two generators Xi and Xj, their Lie Bracket is defined by

[Xi, Xj] := XiXj −XjXi.

Given X1 = ξ1(x, y)∂x + η1(x, y)∂y and X2 = ξ2(x, y)∂x + η2(x, y)∂y, the Lie bracket of X1

and X2 is

[X1, X2] = X1X2 −X2X1 = (ξ1∂x + η1∂y)(ξ2∂x + η2∂y)− (ξ2∂x + η2∂y)(ξ1∂x + η1∂y)
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= (ξ1ξ2x + η1ξ2y − ξ2ξ1x − η2ξ1y)∂x + (ξ1η2x + η1η2y − ξ2η1x − η2η1y)∂y

The result of calculation of Lie Bracket is either zero or another differential operator. The
resultant differential operation of symmetries is also a symmetry of the differential equation
or differential function. The set of all symmetries form an algebra known as Lie algebra and
this is the importance of the symmetries with its other uses.

One can easily verify that the symmetry generators satisfy the following sl(2, R) Lie
algebra, a representation of the special linear group in two dimension.

[X1, X2] = 2X1 [X1, X3] = X2 [X2, X3] = 2X3.

As an example of a second-order ODE having a maximal number of symmetry gener-
ators, one can carry out a similar analysis for the equation

y′′ = 0,

and verify that the list of symmetry generators are given by:

X1 = y∂y

X2 = 1∂y, X3 = x∂y

X4 = ∂x, X5, x∂x +
1

2
y∂y, X6 = x2∂x + xy∂y

X7 = y∂x, X8 = xy∂x + y2∂y.

By explicitly calculating their Lie Brackets, it may further be verified that these eight genera-
tors form a representation of the sl(3, R) Lie algebra. It is interesting however to understand
the underlying implications of the symmetry operations associated with these generators.
One will observe that whenever the ODE is a homogeneous one, we always have the first
symmetry X1. The symmetries X2 and X3 are called solution symmetries because their
coefficient functions represent solutions of the differential equation. The next three symme-
tries X4, X5 and X6 actually form a sl(2, R) algebra amongst themselves, i.e., an sl(2, R)
subalgebra is formed by these generators. The last two symmetries are called non Cartan
symmetries and the symmetry operations induced by them are distinct from the others.
There are a few algebras which occur which occur frequently and these are listed below.

1. Second order: The maximal number of the Lie point Symmetries is eight and the
algebra is denoted by Sl(2, R) . Any scalar second-order equation which has eight Lie
point symmetries can be transformed to y′′ = 0 by means a point transformation.

2. Third order: There are maximum seven Lie point symmetries and is represented by
the equation y′′′ = 0. there can also be four or five.

3. Fourth and Higher order: There are three possibilities and the number of symmetries
can be n + 4, n + 2 or n + 1.
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Algebra of Dimension Three:

There are eleven real Lie algebras of dimension three.

Algebra Nonzero commutation relations
3A1

A1

⊕
A2 [X1, X3] = X1

A3,1 (Weyl) [X2, X3] = X1

A3,2 [X1, X3] = X1, [X2, X3] = X1 + X2

A3,3 [X1, X3] = X1, [X2, X3] = X2

A3,4(E(1,1)) [X1, X3] = X1, [X2, X3] = −X2

Aa
3,5(0 < |a| < 1) [X1, X3] = X1, [X2, X3] = aX2

A3,6E(2) [X1, X3] = −X2, [X2, X3] = X1

Ab
3,7(b > 0) [X1, X3] = bX1 −X2, [X2, X3] = X1 + bX2

A3,8(Sl(2, R)) [X1, X2] = 2X1, [X1, X3] = X2, [X2, X3] = 2X3

A3,9(So(3)) [X1, X2] = X3 [X1, X3] = X1 [X2, X3] = X2

2.5.10 The Method of integrating factors for deducing a first in-
tegral

Let I = x, y, y′, . . . , y(n−1) denotes the first integral of

y(n) = w(x, y, y′, . . . , y(n−1)) (2.5.52)

so that
dI

dx
= 0 when equation (2.5.52) holds. (2.5.53)

As mentioned in section 2.5.6, the last equation can also be written as

AI = 0, Iy(n−1) 6= 0 (2.5.54)

where
A = ∂x + y′∂y + · · ·+ y(n−2)∂y(n−3) + y(n−1)∂y(n−2) + w∂y(n−1) . (2.5.55)
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A nonzero function Λ(x, y) is an integrating factor of the ODE (2.5.52) if

(
y(n) − w

)
Λ =

dφ

dx
. (2.5.56)

for some function φ(x, y, y′, . . . , y(n−1)). Thus, φ is an first integral whenever (2.5.52) holds.
Furthermore, every first integral φ satisfies

dφ

dx
= Aφ + (y(n) − w)φy(n−1) = (y(n) − w)φy(n−1) . (2.5.57)

Comparing (2.5.56) and (2.5.57) we see that every integrating factor has to be of the form

Λ(x, y, y′, . . . , y(n−1))) ≡ φy(n−1) , (2.5.58)

for some first integral φ. Below we discuss how an integrating factor can be systematically
determined.
For this purpose we note the following useful identities:

A∂y(k) = ∂y(k−1)A− ∂y(k−1) − wy(k)∂y(n−1) , k = 1, . . . , n− 1. (2.5.59)

In the above relation we assume the convention y = y(0) and ∂y(−1) ≡ 0. Using the identity
(2.5.59) with k = n− 1, and Aφ = 0, we obtain

Aφy(n−1) = −φy(n−2) − wy(n−1)φy(n−1) .

This may also be written as

φy(n−2) = −(Aφy(n−1) + wy(n−1)φy(n−1)). (2.5.60)

Applying A to each φy(k) , we have

φy(k−1) = −(Aφy(k) + wy(k)φy(n−1)) k = 0, . . . , n− 1. (2.5.61)

For k = 0 the equation becomes

0 = −(Aφy + wyφy(n−1)), (2.5.62)

so that by using (2.5.58) it is possible to write each partial derivative of φ in terms of Λ and
its derivatives and as a result (2.5.62) can be expressed as follows

AnΛ + An−1(wy(n−1)Λ)− An−2(wy(n−2)Λ) + · · ·+ (−1)n−1wyΛ = 0. (2.5.63)

Equation (2.5.63) is called the adjoint of the linearized symmetry condition (2.5.47) and its
solutions are termed as adjoint symmetries of the ODE. We shall call any nonzero solution
Λ of (2.5.63) a co-characteristic. Having found solutions Λi we may determines the ones that
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are integrating factors of the given ODE in the following manner. For that, we first calculate
recursively the quantities:

P i
n−1 = Λi,

P i
k−1 = −AP i

k − wy(k)Λi, k = n− 1, n− 2, . . . , 1
(2.5.64)

From (2.5.58), (2.5.61), we see that Λi is an integrating factor if

P i
k = φi

y(k) , k = 0, . . . , n− 1

wP i
n−1 +

∑n−2
k=0 y(k+1)P i

k = −φi
x.

(2.5.65)

The integrability condition is satisfied if and only if

∂P i
n−1

∂y(j)
=

∂P i
j

∂y(n−1)
, 0 ≤ j ≤ n− 2. (2.5.66)

Thus, R is an integrating factor if and only if the integrability condition (2.5.66) is satisfied.
The first integral φi is then lastly obtained as a line integral from

φi =

∫
P i

0(dy − y′dx) + P i
1(dy′ − y′′dx) + · · ·+ P i

n−1(dy(n−1) − wdx). (2.5.67)

Another important aspect of the analysis of ODEs is the issue of their linearization to
which we now turn our attention in the following section.
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2.6 Linearization of Ordinary Differential Equation

As emphasized in the introduction the linearization problem of nonlinear ODEs is of funda-
mental importance in their analysis. This is because of the existence of a large number of
techniques that have been accumulated, over almost two centuries, for the analysis of linear
ODEs. Keeping this in mind we will now outline the process of linearization of an ODE by
three specific classes of transformations which are explained below.

2.6.1 Point Transformation

Consider the general second-order ordinary differential equation

ẍ + A3(x, t)ẋ3 + A2(x, t)ẋ2 + A1(x, t)ẋ + A0(x, t) = 0 (2.6.1)

Under a point transformation (t, x) 7→ (T, X) of the form

T = G(t, x), X = F (t, x), (2.6.2)

(2.6.1) may be mapped to the following equation of a free particle, viz.

d2X

dT 2
= 0 (2.6.3)

provided the coefficients Ai(x, t), i = 0, . . . , 3 are related to F (x, t) and G(x, t) by the
following

A3 =[GxFxx −GxxFx]/∆ (2.6.4)

A2 =[GtFxx + 2GxFtx − 2FxGxt − FtGxx]/∆ (2.6.5)

A1 =[GxFtt + 2GtFtx − 2FtGtx − FxGtt]/∆ (2.6.6)

A0 =[GtFtt −GttFt]/∆ (2.6.7)

where
∆ = GtFx −GxFt 6= 0. (2.6.8)

Given a second-order differential equation such that the implicit form of coefficients Ai(x, t)
are known, upon solving the above set of equations if one can deduce the functions F (x, t)
and G(x, t) then the linearization transformation may be determined and equation (2.6.1) is
said to be linearizable to (2.6.3).

For the linearized equation (2.6.3) a first integral is obviously given by

I1 =
dX

dT
=

Fxẋ + Ft

Gxẋ + Gt

. (2.6.9)

Hence from the knowledge of linearizing transformation (2.6.2) one can easily deduce a first
integral for the original second-order equation (2.6.1).
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Regarding the issue of compatibility we note that the compatibility conditions between
the coefficients Ai(x, t), i = 0, . . . , 3 such that (2.6.1) is linearizable by means of a point
transformation were first derived by Tresse et. al.[104] and are as follows:

A1xx− 2A2xt + 3A3tt + 6A3A0x + 3A0A3x− 3A3A1t− 3A1A3t−A2A1x + A2A2t = 0, (2.6.10)

2A1xt−A2tt−3A0xx +6A0A3t +3A3A0t−3A0A2x−3A2A0x−A1A2t +2A1A1x = 0. (2.6.11)

2.6.2 Non-Point Transformation

A non-point transformation may be regarded as a kind of nonlocal generalization of point
transformation. The linearization problem for second-order ODEs under a nonlocal trans-
formation of the form

X(T ) = F (t, x), dT = G(t, x)dt (2.6.12)

was first studied by Duarté et al [25].
Here F and G are arbitrary smooth functions with the Jacobian J ≡ ∂(T,X)/∂(t, x) 6=
0. Note that in comparison with the point transformation (2.6.2) only one half of the
transformation (2.6.12) is of a nonlocal character, namely the transformation for the variable
T . Of course if one knows the functional form of x(t) then the latter part of (2.6.12)
ceases to be nonlocal. But knowledge of x(t) is what we are interested in the first place.
Consequently (2.6.12) does indeed constitute a nonlocal transformation for the variable T .
However, it has to be mentioned that as the term ’nonlocal’ is of a very general nature
and can mean different things depending on the context it is more appropriate to refer
to the transformation (2.6.12) as a generalized Sundman transformation (GST) in view of
its similarity to the transformation dt = rdτ introduced by Sundman to study the three-
body problem in the context of celestial mechanics [103]. Here r stands for the dependent
variable (radial component). In Chapter 6 we will demonstrate that a GST is an effective
tool for deducing first integrals and parametric solutions of several nonlinear ODEs. We
shall also introduce the notion of an associated symmetry corresponding to such nonlocal
transformations.

In [25] the authors derived the most general condition under which a second-order
ordinary differential equation is transformable to the linearized equation X ′′(T ) = 0, (here
X ′ = dX

dT
) by means of a generalized Sundman transformation. By using the fundamental

invariants of this equation they obtained the first integrals of several second-order ordinary
differential equations, which could be linearized. The case of the general anharmonic oscil-
lator was studied by Euler and Euler in [27]. Of late there have been a number of papers
concerned with linearization of second and third-order ODEs by using the generalized Sund-
man transformations as also by other methods [11, 12, 28, 64, 71, 72, 73, 75].

Now second-order ordinary differential equation of the form

ẍ + A2(x, t)ẋ2 + A1(x, t)ẋ + A0(x, t) = 0 (2.6.13)
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is equivalent to the free particle equation

d2X

dT 2
= 0 (2.6.14)

under the transformation (2.6.12) when Ai(x, t), i = 0, . . . , 2 are related with F (x, t) and
G(x, t) by the following relations

A2(x, t) =[GFxx − FxGx]/∆
′ (2.6.15)

A1(x, t) =[2GFtx − FtGx − FxGx]/∆
′ (2.6.16)

A0(x, t) =[GFtt − FtGt]/∆
′ (2.6.17)

with

∆′ = GFx. (2.6.18)

An invariant I for the equation (2.6.13) can be found directly from the invariant I = dX/dT
of the equation (2.6.14):

I =
dX

dT
=

Fx

G
ẋ +

Ft

G
. (2.6.19)

After some algebraic computation to eliminate the function F and G and their derivatives
we find the compatibility conditions, which are analogous to the Tresse-Cartan conditions
(2.6.10) and (2.6.11). These condition lead to the following possibilities:

(i) S1(x, t) :=A1x − 2A2t = 0, (2.6.20)

S2(x, t) :=2A0xx − 2A1tx + 2A0A2x − A1xA1 + 2A0xA2 + 2A2tt = 0. (2.6.21)

(ii) If S1(x, t) 6= 0 and S2(x, t) 6= 0 then

S2
2+2S1tS2 − 2S2

1A1t + 4S2
1A0x + 4S2

1A0A2 − 2S1S2t − S2
1A

2
1 = 0, (2.6.22)

S1xS2 + S2
1A1x − 2S2

1A2t − S1S2x = 0. (2.6.23)

Example 2.6.1

The equation

ẍ− 2

x
ẋ2 +

2x

t2
= 0. (2.6.24)

This equation is linearizable by the non-point transformation

X = t3x3/2, dT = tx5/2dt, (2.6.25)

as can be easily verified and a first integral obtained by using equation (2.6.19) and is given
by

I =
t

x

(
t

2x
ẋ + 1

)
. (2.6.26)
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Finally we end this section by noting that there exist a third possibility in which one
can attempt to linearize a second-order ODEs by means of a transformation which is nonlocal
in both the new variables X and T , i.e., a transformation of the form

dX = A(x, t)dx + B(x, t)dt

dT = C(x, t)dx + D(x, t)dt.

Such completely nonlocal transformation are considered in Chapter 7 and will be employed
to find first integrals of a time dependent higher-order Riccati equation.
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2.7 The Jacobi Last Multiplier

The Jacobi Last Multiplier is a useful tool originally introduced by Jacobi in the context
of integrability of a system of first-order ODEs. It plays an important role in Lagrangian
dynamics as will be explained in the Chapter 8, but prior to that we introduced here some
of its basic features.

2.7.1 Jacobi’s construction of the last multiplier

Let M = M(x1, · · · , xn) be a non-negative C1 function non-identically vanishing on any
open subset of Rn. Consider a set of first order equations

dxr

dt
= Wr(x1, · · · , xn), r = 1, ..., n, (2.7.1)

where the vector fields (W1,W2, · · · ,Wn) are functions of (x1, · · · , xn, t). Let (c1, · · · , ck) be
a set of constant of motions of these set of equations. The Jacobi Last Multiplier may be
regarded as the density associated with the invariant measure

∫
Ω

M dx, where Ω is any open
subset of Rn. Thus the invariance of flux implies

∫

Ω

Mδx1 · · · δxk =

∫

φt(Ω)

M
∂(x1, · · · , xk)

∂(c1, · · · , ck)
δc1 · · · δck, (2.7.2)

where φt(.) is the flow generated by the solutions x = x(t) of ẋ = W (x). In other words,
φt(Ω) is the transformation of the domain Ω under the flow generated by the solution. This
invariant condition yields

d

dt

{
M

∂(x1, · · · , xk)

∂(c1, · · · , ck)

}
= 0 (2.7.3)

or
dM

dt

∂(x1, · · · , xk)

∂(c1, · · · , ck)
+ M

k∑
p=1

∂(x1, · · · , xp−1,Wp, · · · , xk)

∂(c1, · · · , ck)
= 0

so that
dM

dt

∂(x1, · · · , xk)

∂(c1, · · · , ck)
+ M

k∑
p=1

∂Wp

∂xp

· ∂(x1, · · · , xk)

∂(c1, · · · , ck)
= 0,

and leads to the following equation:

dM

dt
+ M

n∑
i=1

∂Wi

∂xi

= 0. (2.7.4)

The equation serves as the defining equation for a Jacobi last multiplier. Note that the last
multiplier is not unique and this has a useful consequence.
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Proposition 2.7.1 The ratio of two Jacobi Last Multiplier (JLM) is a first integral.

Proof : The existence of more than one Jacobi multiplier leads to the following result.
Suppose M1 and M2 are the Jacobi Last multipliers for system (2.7.1), then from (2.7.4) we
have

dMα

dt
+ Mα

n∑
i=1

∂Wi

∂xi

= 0, α = 1, 2,

implying
d

dt

(M1

M2

)
= 0,

i.e., the ratio of two JLM’s is a first integral. Alternatively, M1/M2 satisfy the equivalent

PDE of the differential equation i.e. A(M1/M2 = 0).

Lemma 2.7.1 If a system of differential equations

dxr

dt
= Wr, (r = 1, . . . , n) (2.7.5)

is transformed by change of variables into another system

dyr

dt
= Yr, (r = 1, . . . , n) (2.7.6)

then
n∑

r=1

∂Wr

∂xr

=
1

D

n∑
r=1

∂Yr

∂yr

(2.7.7)

where D denotes the Jacobian
∂(x1, x2, . . . , xn)

∂(y1, y2, . . . , yn)

Proof: Under the change of variables x → y we have

n∑
r=1

∂Wr

∂xr

=
n∑

r=1

∂

∂xr

( n∑

k=1

Yk
∂xr

∂yk

)
=

n∑
r=1

n∑
s=1

∂ys

∂xr

∂

∂ys

( n∑

k=1

Yk
∂xr

∂yk

)

=
n∑

r=1

n∑
s=1

n∑

k=1

∂ys

∂xr

(
Yk

∂2xr

∂ys∂yk

+
∂Yk

∂ys

∂xr

∂yk

)
.

In this expression the coefficient of ∂Yk

∂ys
is

∑n
r=1

∂ys

∂xr

∂xr

∂yk
, which is zero or unity according as s

is different from, or equal to k. Also ∂ys

∂xr
= Ars

D
, where Ars denotes the minor of ∂xr

∂ys
in the

determinant D. Again the coefficient of Yk in the above expression is

n∑
r=1

n∑
s=1

∂ys

∂xr

∂2xr

∂ys∂yk

,
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and may be written as

1

D

n∑
r=1

n∑
s=1

Ars
∂2xr

∂ys∂yk

=
1

D

n∑
r=1

∂(x1, x2, . . . , xr−1, ∂xr/∂yk, xr+1, . . . , xr)

∂(y1, y2. . . . , yn)
=

1

D

∂D

∂yk

.

We have therefore

n∑
r=1

∂Wr

∂xr

=
n∑

k=1

∂Yk

∂yk

+
n∑

k=1

Yk
1

D

∂D

∂yk

=
1

D

n∑

k=1

∂DYk

∂yk

which establishes the lemma.

The reason for calling it the ’last multiplier’ is actually contained in Jacobi’s original
criterion for the integrability of the system of n first-order ODEs. In this formulation one
requires almost complete knowledge of the system under consideration in the sense that if
n − 2 first integrals of the system are known then from the knowledge of a multiplier one
can derive an additional i.e., the (n − 1)-th first integral and thereby reduce the system to
quadrature. We outline this process below [105].

Consider a system of n ODEs of the form (2.7.1). Let

fr(x1, . . . , xn) = cr, (r = 1, . . . , n− 2) (2.7.8)

denote n− 2 known first integrals of the system and consider the change of variables

(x1, . . . , xn−1, xn) → (c1, . . . , cn−1, yn−1, yn), (2.7.9)

with yn−1 = xn−1 and yn = xn. If

∆ =
1

D
=

∂(f1, . . . , fn−2, xn−1, xn)

∂(x1, . . . , xn−2, xn−1, xn)
=

∂(f1, . . . , fn−2)

∂(x1, . . . , xn−2, xn−1)
, (2.7.10)

then using (2.7.9) to eliminate x1, . . . , xn−2 the system reduces to a planar one:

dxn−1

dt
= W ′

n−1(xn−1, xn, {cr}), (2.7.11)

dxn

dt
= W ′

n(xn−1, xn, {cr}). (2.7.12)

then by using lemma (2.7.1), we have

n∑
i=1

∂Wi

∂xi

= ∆
[ ∂

∂xn−1

(W ′
n−1

∆′

)
+

∂

∂xn

(W ′
n

∆′

)]
, (2.7.13)

where
∆′ ≡ ∆′(xn−1, xn, {cr}).
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Since the last multiplier is defined as a solution of

d log M

dt
+

n∑
i=1

∂Wi

∂xi

= 0, (2.7.14)

it satisfies, in view of (2.7.13) the equation

d log M

dt
+ ∆

[ ∂

∂xn−1

(W ′
n−1

∆′

)
+

∂

∂xn

(W ′
n

∆′

)]
= 0,

or,
∂

∂xn−1

(M ′W ′
n−1

∆′

)
+

∂

∂xn

(M ′W ′
n

∆′

)
= 0, (2.7.15)

which yields the first integral

I(xn−1, xn) =

∫
M ′

∆′ (W
′
n−1dxn −W ′

ndxn−1). (2.7.16)

Example 2.7.1 (Whittaker’s equation)

ẋ1 = x3, ẋ2 = x4, ẋ3 = x1, ẋ4 = x3 (2.7.17)

It is easy to verify that
f1 = x4 − x1 = c1

and
f2 = x2 − x3 − t(x4 − x1) = c2

are two first integrals of the above system of equations. From these two first integrals we
obtain x1 = x4 − c1 and x2 = x3 + c1t + c2.

The resulting planar system has the form

ẋ3 = x4 − c1, ẋ4 = x3.

On the other hand it follows from the first integral

∆ =
∂(f1, f2)

∂(x1, x2)
= −1

and the simple calculation shows that the last multiplier is M = 1.
Hence by

I =

∫
(x3dx3 − (x4 − c1)dx4) =

1

2
(x2

1 − x2
3).

So that the third first integral may be taken as

f3 = x2
1 − x2

3 = c3.
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2.7.2 Jacobi Last Multiplier for a planar vector field

Let us begin by considering a planar system

ẋ = f(x, y, ẏ = g(x, y). (2.7.18)

For such a system a knowledge of last multiplier enable us to find a first integral and hence
the solution. Assuming M = M(x, y) to be C1 (non-zero) fuction such that

M(gdx− fdy) = dI. (2.7.19)

Since gdx− fdy = 0, on all solutions we have dI = 0 and hence I(x, y) is a first integral.
Now,

dI = Ixdx + Iydy. (2.7.20)

Substituting (2.7.20) in (2.7.19), we obtain

Ix = Mg, (2.7.21)

Iy = −Mf. (2.7.22)

Therefore,

I = −
∫ y

Mfdy + J(x). (2.7.23)

Where J(x) is an arbitrary function. Next (2.7.21) implies

J ′(x) = Mg +
∂

∂x

∫ y

Mfdy. (2.7.24)

From relation (2.7.21), equating the mixed derivatives Ixy = Iyx, we have

∂(Mf)

∂x
+

∂(Mg)

∂y
= 0. (2.7.25)

The function is also called the density of the integral invariant since on any bounded closed
region D in the phase plane R2 we have

∫

D

∫
M(x, y)dxdy =

∫

φ(t)(D)

∫
M(x, y)dxdy, (2.7.26)

where φ(t)(D) is the transformation of the domain D under the flow generated by the
solution. Therefore, for the determination of the first integral I = I(x, y) of (2.7.18), we
search for a non-trivial solution of (2.7.25) for the multiplier M , whose role here is similar
to that of an integrating factor.

The formal definition of the Jacobi Last Multiplier for an n-th order ODE y(n) =
w(x, y, y′, . . . , yn−1) is as follows.
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Definition 2.7.1 Given an nth order ODE or its equivalent linear PDE in (n+1) variables

Af = (∂x + y′∂y + y′′∂y′ + · · ·+ w∂y(n−1))f = 0, (2.7.27)

the Jacobi last multiplier M is defined by

MAf :=
∂(f, φ1, φ2...φn)

∂(x, y, y′...y(n−1))
= det




fx fy ... fy(n−1)

φ1
x φ1

y ... φ1
y(n−1)

...
... ...

...

φ
(n)
x φ

(n)
y ... φ

(n)

y(n)


 = 0. (2.7.28)

From the above definition, it follows that the Jacobi last multiplier (JLM) can be
varied by selecting a different set of (n−1) independent solutions ψ1, ψ2, ..., ψn−1 of (2.7.27).
If the corresponding JLM be M̃ then

M̃Af =
∂(f, ψ1, ψ2...ψn−1)

∂(x, y, y′...y(n−1))
=

∂(f, φ1, φ2...φn)

∂(x, y, y′...y(n−1))

∂(ψ1, ψ2...ψn−1)

∂(φ1, φ2...φn−1)
= M

∂(ψ1, ψ2...ψn−1)

∂(φ1, φ2...φn−1)

Indeed, each JLM as defined above turns out to be a solution of the following linear PDE

∂M

∂x
+

n∑

k=1

∂My(k)

∂y(k−1)
= 0 on y(n) = w(x, y, y′, ...y(n−1)). (2.7.29)

We verify this for the case of n = 2, i.e., for a second-order ODE, say y′′ = w(x, y, y′) whose
associated PDE is

(∂x + y′∂y + w∂y′)f = 0.

With the above definition, we find that

(M∂x + My′∂y + Mw∂y′) f = det




fx fy fy′

φ1
x φ1

y φ1
y′

φ2
x φ2

y φ2
y′


 .

Expanding the determinant on the right hand side and equating the coefficients of the partial
derivatives of f , we get

M = φ1
yφ

2
y′ − φ1

y′φ
2
y,

My′ = φ1
y′φ

2
x − φ1

xφ
2
y′ ,

Mw(x, y, y′) = φ1
xφ

2
y − φ1

yφ
2
x. (2.7.30)

Using these expressions, it is easy to verify that

∂M

∂x
+

∂(My′)
∂y

+
∂(Mw)

∂y′
= 0, or

d log M

dx
+

∂w

∂y′
= 0.
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Example 2.7.2

ẍ = x
−a + λẋ2

(λx2 + 1)2
a, λ ∈ R

Writing this equation as a system of first-order ODEs we have

ẋ = y

ẏ = x
−a + λy2

(λx2 + 1)2
(2.7.31)

It follows that
d

dt
log M +

2λxẋ

(λx2 + 1)2
= 0,

whence

M =
1

λx2 + 1
.

2.7.3 First Integrals from Symmetries and JLM

It is evident that the classical definition of the JLM is overtly restrictive, requiring as it does
almost complete knowledge of the system. However, being dependent on first integrals, it is
natural to expect that it should be connected in some way to the symmetries of the equation
under investigation. This connection was unravelled by Lie and its formulation in terms of
the generators of the Lie symmetry algebra is outlined below.
In order to investigate the connection between the Jacobi last multiplier and infinitesimal
transformations we consider an autonomous system of first-order ordinary differential equa-
tions of the form

ẋk = ak(x1, ..., xn), k = 1, ..., n. (2.7.32)

As already explained in the previous section such a system of ODEs may be associated with
the equivalent first-order partial differential equation

Ãf =
n∑

k=1

ak(x1, ..., xn)
∂f

∂xk

= 0 (2.7.33)

Assume now that the system admits n− 1 infinitesimal generators of symmetry given by

Xj =
n∑

k=1

ξjk(x1, ..., xn)
∂

∂xk

, j = 1, ..., n− 1 (2.7.34)

Define

∆ = det




a1 a2 · · · an

ξ11 ξ12 · · · ξ1n
...

... · · · ...
ξn−1,1 ξn−1,2 · · · ξn−1,n


 (2.7.35)
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It may now be proved following Bianchi 2 [3] that ∆−1 is a multiplier. For this purpose let
w1, ..., wn−1 be (n − 1) linearly independent solutions of the PDE Ãf = 0. Since the last
multiplier is defined, in this case, by

MÃf =
∂(f, w1, ..., wn−1)

∂(x1, x2, ..., xn)
= 0

it follows by setting f = x1 that

Ma1 =
∂(x1, w1, ..., wn−1)

∂(x1, x2, ..., xn)
=

∂(w1, ..., wn−1)

∂(x2, ..., xn)
. (2.7.36)

Similarly setting f = x2 we find

Ma2 = (−1)
∂(w1, w2..., wn−1)

∂(x1, x3, ..., xn)
, (2.7.37)

so that finally with f = xn we obtain

Man = (−1)n+1 ∂(w1, w2..., wn−1)

∂(x1, x2, ..., xn−1)
. (2.7.38)

Let us assume the rhs of the last relation is non zero and consider the product

∆×∂(w1, w2..., wn−1)

∂(x1, x2, ..., xn−1)
= det




a1 a2 · · · an

ξ11 ξ12 · · · ξ1n
...

... · · · ...
ξn−1,1 ξn−1,2 · · · ξn−1,n


 det




∂w1

∂x1

∂w2

∂x1
· · · ∂wn−1

∂x1
0

...
... · · · ... 0

∂w1

∂xn−1

∂w2

∂xn−1
· · · ∂wn−1

∂xn−1
0

∂w1

∂xn

∂w2

∂xn
· · · ∂wn−1

∂xn
1




= det




Ãw1 Ãw2 · · · Ãwn−1 an

X1w1 X1w2 · · · X1wn−1 ξ1n
...

...
...

...
...

Xn−1w1 Xn−1w2 · · · Xn−1wn−1 ξn−1,n




where use has been made of the properties of determinant multiplication. However as wk(k =
1, ..., n− 1) are solutions of Ãf = 0 it follows that

∆× ∂(w1, ..., wn−1)

∂(x1, x2, ..., xn−1)
= (−1)n+1an det




X1w1 X1w2 · · · X1wn−1
...

... · · · ...
Xn−1w1 Xn−1w2 · · · Xn−1wn−1


 (2.7.39)

Since we have assumed that Xj are symmetry generators it follows from definition that

[Xj, Ã]f = λÃf.

2I would like to thank Prof. M.C. Nucci for drawing my attention to [3]
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Hence as wk are solutions of Ãf = 0 we have Ã(Xjwk) = 0 implying thereby that Xjwk is
also a solution for each j, k = 1, ..., n− 1. Therefore,

det




X1w1 X1w2 · · · X1wn−1
...

... · · · ...
Xn−1w1 Xn−1w2 · · · Xn−1wn−1




is a solution of Ãf = 0. Let

Ω = det




X1w1 X1w2 · · · X1wn−1
...

... · · · ...
Xn−1w1 Xn−1w2 · · · Xn−1wn−1


 .

Therefore (2.7.39) can be written as
∆M = Ω, (2.7.40)

where M is given by (2.7.38). Which can be written as

M

∆−1
= Ω. (2.7.41)

Clearly
d

dt

(
M

∆−1

)
=

dΩ

dt
= 0. (2.7.42)

Therefore from Proposition 2.7.1 it follows that ∆−1 is a multiplier.

Alternatively for the n-th order ODE the above result is as follows:

Given an n-th order ODE y(n) = w(x, y, y′, ..., y(n−1)) or its equivalent linear PDE

fx + y′fy + y′′fy′ + · · ·+ wfy(n−1) = 0

if we know n− 1 symmetries of the ODE/PDE say

Xi = ξi∂x + ηi∂y i = 1, ...n− 1

with prolongations

X
(n−1)
i = ξi∂x + ηi∂y + η

(1)
i ∂y′ + · · ·+ η

(n−1)
i ∂y(n−1) i = 1, ...n− 1

then Jacobi’s last multiplier is given by M = ∆−1, provided that ∆ 6= 0 [3], where

∆ = det




1 y′ y′′ · · · w

ξ1 η1 η
(1)
1 · · · η

(n−1)
1

...
...

... · · · ...

ξn−1 ηn−1 η
(1)
n−1 · · · η

(n−1)
n−1


 . (2.7.43)
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This provides us with a very straightforward tool to search for the Last Multiplier. In ad-
dition since the ratio of two Last Multipliers is a first integral, hence the search for first
integrals is greatly simplified and involves simple algebra. The following example provides
an illustration.

Example 2.7.3

y′′ =
3y′2

y
+

y′

x

This equation is found to admit an eight dimensional Lie symmetry algebra generated by
the following operators

Xi = ξi∂x + ηi∂y (i = 1, ...8)

such that

X1 = y∂y, X2 = y3∂y, X3 = x∂x, X4 =
1

x
∂x

X5 = x2y3∂y, X6 =
1

xy2
∂x, X7 =

x

y2
∂x − 1

y
∂y, X8 = x3∂x − x2y∂y.

One can calculate all the 14 possible determinants of the form ∆ij using prolongations of
the symmetry generators Xi and Xj up to the first-order. The ratio of these determinants
actually give rise to the first integrals. Note that while several expressions for such ratios
can be written, one has to check whether these expressions are functionally independent.
Only the functionally independent expressions arising from the ratio of the determinants
(or equivalently from the ratios of the Last Multipliers) determine the first integrals. For
instance in the present case

M12

M13

=
∆13

∆12

= −xy′ + y

y3
= I1.

In this chapter we have attempted to give a brief overview of some of the techniques
relevant to our work. After a few preliminary definitions concerning ordinary differential
equations we have focused on four principle features namely the issue of integrability of an
ODE, techniques for finding their Lie symmetries, the linearization problem for ODEs and
have finally ended with a description of Jacobi’s last multiplier. Since the issue of integrabil-
ity is closely associated with the existence of first integrals we have described in some detail
the essential features of Darboux’s classical method and the Prelle-Singer semi algorithm.
The subject of Lie symmetries of ordinary and partial differential equations is itself a vast
topic and we have purposely limited our description here to the barest minimum touching
upon only those points which are relevant to our subsequent work.

In the following chapters we shall give a more detailed account of some of our work
with the hope that they will illustrate more clearly the tools and techniques outlined in this
chapter.
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Chapter 3

The Extended Prelle-Singer method

3.1 Introduction

The problem of finding integrating factors and first integrals is fundamental to any analysis
of ordinary differential equations. In this chapter we address these features in case of two
classes of ODEs, namely the equation

ẍ +
1

2
ψxẋ

2 + ψtẋ + B(t, x) = 0

which is sometimes known as the Jacobi equation and the more well known Liénard equation
which has the generic form

ẍ + f(x)ẋ + g(x) = 0. (3.1.1)

The former is interesting because it includes many equations of Painlevé-Gambier classifica-
tion as given in Ince’s book [44]. The Liénard equation is famous in the other hand because
it includes a number of important physical systems such as those listed below.

1. f(x) = k, g(x) = w2
0x, ⇒ ẍ + kẋ + w2

0x = 0 damped harmonic oscillator.

2. f(x) = αx, g(x) = βx3, ⇒ ẍ + αxẋ + βx3 = 0 Modified Emden equation.

3. f(x) = α + βx2, g(x) = −γx + x3, ⇒ ẍ + (α + βx2)ẋ − (γx + x3) = 0
Duffing Van der Pol oscillator.

4. f(x) = (k1x
q + k2), g(x) = k3x

2q+1 + k4x
q+1 + λ1x, where q ∈ R

The last case includes many systems like the anharmonic oscillator, force free Helmholtz
and Duffing oscillator as special cases. In [10], the authors have studied this system for q =
arbitrary and deduced a number of new completely integrable cases.

In subsection 2.2.9 we described the Prelle-Singer method for deducing integrating
factor for a first-order ODEs when it has an elementary first integral. Here we describe an
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extension of their procedure applicable to second-order ODEs [8, 9, 10].

It is clear that a second-order ODE is written in the form:

ẍ = φ(x, ẋ), (3.1.2)

may be written either as a system of first-order equations

ẋ = y, ẏ = φ(x, y) (3.1.3)

or as a pair of differential one forms θi, i = 1, 2:

θ1 = dx− ydt = 0, θ2 = dy − φdt = 0. (3.1.4)

Multiplying θ1 with an unknown function S(x, y) and adding it to to θ2 we have

(Sy + φ)dt = Sdx + dy.

Assuming R to be an integrating factor of this equation we have upon multiplication

R(Sy + φ)dt−RSdx−Rdy = 0, (3.1.5)

which implies that if I(t, x, y) be the corresponding first integral such that

Itdt + Ixdx + Iydy = 0

we must have
It = R(Sy + φ), Ix = −RS, Iy = −R. (3.1.6)

The compatibility of these equations requires

Ixy = Iyx, Itx = Ixt and Ity = Iyt. (3.1.7)

From these conditions it is straightforward to derive the following equations

D[R] = −((RS) + φyR), (3.1.8)

D[RS] = −φxR, (3.1.9)

where
D = y∂x + φ∂y.

Two subcases may be distinguished.
A: When It = 0, that is when the system is conservative and
B: when It 6= 0 for a non conservative system.

In case of the former, it is easy to see that S = −φ/y. Therefore one needs to determine only
the unknown function R, which is the required integrating factor. We shall analyze case A
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first, since it is somewhat simpler, and postpone a discussion of the latter.
For case A, (3.1.8) simplifies to

D[R] = (
φ

y
− φy)R, (3.1.10)

Substituting the ansatz

R =
y

T (x, y)
, (3.1.11)

causes (3.1.10) to simplify further and it reduces to

D[T ] = yTx + φTy = φyT. (3.1.12)

Let us consider an example to illustrate the method developed thus far.

Example 3.1.1

Consider the equation

ẍ +
1

2
ψxẋ

2 + ψtẋ + B(t, x) = 0.

This is equivalent to the system of equations

ẋ = y

ẏ = φ(t, x, y) = −
[
1

2
ψxẋ

2 + ψtẋ + B(t, x)

]

so that
φy = −(ψxy + ψt) = −D[ψ].

Thus (3.1.12) becomes
D[log T + ψ] = 0

which implies T = K exp(−ψ). Hence

R =
y

K
exp(ψ) = −Iy

implies

I = −eψ

K

y2

2
+

J(x)

K
,

where K is a numerical constant. On the other hand Ix = −RS implies

J ′(x) = eψ(−ψty −B(t, x))

. Clearly one must have ψt = 0 and B(t, x) = B(x) for a time independent first integral. In
that case we obtain

I(x, y) = − 1

K

[
eψ y2

2
+

∫ x

eψBdx

]
. (3.1.13)

Such a first integral occurs, therefore for all equations having the generic form

ẍ +
1

2
ψxẋ

2 + B(x) = 0, (3.1.14)

and may be a treated as a formula for deriving an time independent first integral for them.
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3.1.1 First integrals of Painlevé-Gambier equations

It will be evident that the above method may be applied, in principle to a number of equations
of the Painlevé-Gambier classification. We shall introduce a slight change of notation wherein
x will denote the independent variable and illustrate this below.

Painlevé-Gambier equation XII

Let us consider the Painlevé-Gambier XII equation

y′′ =
1

y
y′2 + αy3 + βy2 + γ +

δ

y

Comparison with (3.1.14) above indicates that 1
2
ψy = −1/y and hence eψ = y−2, while

B(x, y) = −
[
αy3 + βy2 + γ + δ

y

]
. Then (3.1.13) yields the following first integral

y′2 = αy4 + 2βy3 − 2γy − δ + K1y
2,

where we have set K1 = −2KI(y, y′). We have checked that all the known x- independent
first integrals of the Painlevé-Gambier classification [44], can be obtained from (3.1.13).

Clearly it is of interest to know whether there exists other first integrals depending
perhaps on the independent variable x, for equations having a first integral given by the
above formula. This brings us actually to a discussion of case B, i.e. (It 6= 0) of the previous
section.

Painlevé-Gambier equation XXII

We illustrate next, the existence of an x dependent first integral for equation XXII of the
Painlevé-Gambier classification,

d2y

dx2
=

3y′2

4y
− 1. (3.1.15)

A known first integral of this equation is

K =

(
y′2 − 4y

4y3/2

)
, (3.1.16)

which may be obtained from (3.1.13).
From (3.1.8) and (3.1.9), we have

D[R] = −(S + φy′)R (3.1.17)

D[RS] = −φyR, (3.1.18)
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as a result of our change in notation. Here D = ∂x + y′∂y + φ∂y′ with

φ(x, y, y′) =
3y′2

4y
− 1 = φ0(y)y′2 − 1, φ0(y) =

3

4y
. (3.1.19)

Closer inspection of equations (3.1.17) and (3.1.18) reveals that they are a pair of coupled
first-order equations in the variables R and RS respectively. In [8, 9, 10] the authors have
deduced first integrals of oscillator type systems under very general conditions using the
above formulation. Regarding the issue of finding solutions of R and S they have assumed
certain specific rational forms depends on y′ and have refered to their procedure as an
extension of the Prelle-Singer method to second-order ODEs. Following their prescription
we assume the unknown quantities R and S admit rational solutions of the form

R =
f

g
and RS =

h

g
⇒ S =

h

f
, (3.1.20)

so that (3.1.17) and (3.1.18) have the following appearance

gD[f ]− fD[g] = −(h + φy′f)g (3.1.21)

gD[h]− hD[g] = −φyfg. (3.1.22)

However, as we will show in the next chapter the so called extended Prelle-Singer method
of the authors of [8, 9, 10] is nothing but a decomposition of the existing adjoint symmetry
equation into a first-order system and therefore falls within the domain of Lie’s symmetry
analysis.
For the time being however, from a leading order analysis of the above equations, assuming
f∼y′α, h ∼ y′γ and g ∼ y′β and with φ as in (3.1.19), it follows that γ = α + 1 with β being
arbitrary. This suggests the following ansatz for the y′ dependence of the functions f, g and
h namely:

f(y, y′) = f0 + f1y
′ + f2y

′2,

h(y, y′) = h0 + h1y
′ + h2y

′2 + h3y
′3,

g(y, y′) = g0 + g1y
′ + g2y

′2 + g3y
′3 + g4y

′4. (3.1.23)

Substituting these into (3.1.21) and equating different powers of y′ leads to the following set
of equations:

−g0f1 + f0g1 = −h0g0, (3.1.24)

g0F1 − f0G1 = −{(h1 + 2φ0f0)g0 + h0g1}, (3.1.25)

−g2f1+g1F1+g0F2+f2g1−f1G1−f0G2 = −{(h2+2φ0f1)g0+(h1+2φ0f0)g1+h0g2}, (3.1.26)

−g3f1 + g2F1 + g1F2 + g0F3 − f2G1 − f1G2 − f0G3

= −{(h3 + 2φ0f2)g0 + (h2 + 2φ0f1)g1 + (h1 + 2φ0f0)g2 + h0g3}, (3.1.27)

−g4f1 + g3F1 + g2F2 + g1F3 − f2G2 − f1G3 − f0G4 = −{(h3 + 2φ0f2)g1+
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(h2 + 2φ0f1)g2 + (h1 + 2φ0f0)g3 + h0g4}, (3.1.28)

g4F1+g3F2+g2F3−f2G3−f1G4−f0G5 = −{(h3+2φ0f2)g2+(h2+2φ0f1)g3+(h1+2φ0f0)g4},
(3.1.29)

g4F2 + g3F3 − f2G4 − f1G5 = −{(h3 + 2φ0f2)g3 + (h2 + 2φ0f1)g4}, (3.1.30)

g4f2y − f2g4y = −h3g4. (3.1.31)

Here we have defined

F1 = f0y − 2f2, F2 = f1y + φ0f1, F3 = f2y + φ0f2 (3.1.32)

and
G1 = g0y − 2g2, G2 = g1y + φ0g1 − 3g3, (3.1.33)

G3 = g2y + 2φ0g2 − 4g4, G4 = g3y + 3φ0g3, G5 = g4y + 4φ0g4. (3.1.34)

On the other hand from (3.1.22) we obtain the following equations:

−h0g1 + g0h1 = 0, (3.1.35)

h0G1 − g0H1 = 0, (3.1.36)

−h2g1 + h1G1 + h0G2 + g2h1 − g1H1 − g0H2 = φ0yf0g0 (3.1.37)

−h3g1 + h2G1 + h1G2 + h0G3 + g3h1 − g2H1 − g1H2 − g0H3 = φ0y(f1g0 + f0g1), (3.1.38)

h3G1 + h2G2 + h1G3 + h0G4 + g4h1 − g3H1 − g2H2 − g1H3 − g0H4 = φ0y(f2g0 + f1g1 + f0g2),
(3.1.39)

h3G2 +h2G3 +h1G4 +h0G5−g4H1−g3H2−g2H3−g1H4 = φ0y(f2g1 +f1g2 +f0g3), (3.1.40)

h3G3 + h2G4 + h1G5 − g4H2 − g3H3 − g2H4 = φ0y(f2g2 + f1g3 + f0g4), (3.1.41)

h3G4 + h2G5 − g4H3 − g3H4 = φ0y(f2g3 + f1g4), (3.1.42)

h3G5 − g4H4 = φ0yf2g4, (3.1.43)

where
H1 = h0y − 2h2,

H2 = h1y + φ0h1 − 3h3,

H3 = h2y + 2φ0h2

H4 = h3y + 3φ0h3. (3.1.44)

To solve the system of first order coupled PDEs given by (3.1.24)-(3.1.31) and (3.1.35)-
(3.1.43) we observe that, one can satisfy one half of each set identically, by making a second
ansatz, namely

fodd = godd = heven = 0. (3.1.45)

It then follows that
H1 = H3 = G2 = G4 = 0,
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and from (3.1.35) we find
h1 = 0. (3.1.46)

Taking this in to account we are now left with the following equations from the set (3.1.24)-
(3.1.31):

g0(f0y − 2f2)− f0(g0y − 2g2) = −2φ0f0g0, (3.1.47)

g2(f0y−2f2)+g0(f2y+2φ0f2)−f2(g0y−2g2)−f0(g2y+2φ0g2−4g4) = {(h3+2φ0f2)g0+2φ0f0g2}
(3.1.48)

g4(f0y−2f2)+g2(f2y+2φ0f2)−f2(g2y+2φ0g2−4g4)−f0(g4y+4φ0g4) = {(h3+2φ0f2)g2+2φ0f0g4}
(3.1.49)

g4f2y − f2g4y = h3g4. (3.1.50)

On the other hand from the set of equations (3.1.35)-(3.1.43), with h1 = 0 we obtain the
following four equations:

3h3 = φ0yf0, (3.1.51)

h3(g0y + g2 − 3φ0g0)− g0h3y = φ0y(f2g0 + f0g2), (3.1.52)

h3(g2y − g4 − φ0g2)− g2h3y = φ0y(f2g2 + f0g4), (3.1.53)

h3(g4y + φ0g4)− g4h3y = φ0yf2g4. (3.1.54)

Since φ0 = 3
4y

it follows φ0y = −φ0

y
and upon rearranging (3.1.54), we have

h3g4y − g4h3y = −φ0g4(h3 +
f2

y
).

Making the assumption that the coefficients of the highest powers of y′ in the expressions for
g, h are constants, say g4 = µ and h3 = ν so that g4y = h3y = 0, one obtains the following
relation determining the coefficient of the y′2 in f :

h3 +
f2

y
= 0 ⇒ f2 = −νy. (3.1.55)

While from (3.1.51) we obtain
f0 = −4νy2. (3.1.56)

The remaining equations (3.1.52) and (3.1.53) determine the coefficients g0 and g2, from
solutions of the following coupled linear equations:

g0y − 3

y
g0 = 2g2, (3.1.57)

g2y − 3

2y
g2 = 4µ. (3.1.58)

These conditions are consistent with the set of equations (3.1.47)-(3.1.50), as may be verified.
Furthermore, the solutions of (3.1.57) and (3.1.58) are easy to construct and are given by

g2 = −8µy and g0 = 16µy2.



76 The Extended Prelle-Singer method

Hence we finally get

R =
f

g
=
−νy(4y + y′2)
µ(y′2 − 4y)2

and S =
h

f
=

νy′3

−νy(4y + y′2)
. (3.1.59)

It is now straightforward to obtain the corresponding first integral as

I(x, y, y′) =
ν

4µ

(
x− 4yy′

y′2 − 4y

)
. (3.1.60)

This is a new first integral not listed in Ince’s book [44].

3.1.2 Equations of the Liénard type

The Liénard equation
ẍ + f(x)ẋ + g(x) = 0, (3.1.61)

and frequently occurs in physical applications. Instead of writing this as a system of first-
order equations in the usual form

ẋ = y, ẏ = φ(x, y),

where φ = −(f(x)y + g(x)), let us write it as

ẋ = v − r
g(x)

f(x)
, (3.1.62)

v̇ = −1

r
f(x)v, (3.1.63)

subject to the condition

d

dx

(
g

f

)
=

1

r

(
1− 1

r

)
f(x), r 6= 0, 1. (3.1.64)

Here r is a parameter. In order to determine a first integral for the system (3.1.62) and
(3.1.63), we follow the same formulation as outlined in section (3.1) and demand that the
one form

R[S(v − r
g

f
)− 1

r
fv]dt−RSdx−Rdv = 0, (3.1.65)

be exact. This means there exists a function, I(t, x, v), such that

It = R[S(v − r
g

f
)− 1

r
fv],

Ix = −RS and Iv = −R. (3.1.66)
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If we are interested in a time independent first integral, so that It = 0, we immediately
obtain

S =
fv

r
(
v − r g

f

) . (3.1.67)

From the compatibility of (3.1.66), using the above expression for S, we have the following
equation for determining the integrating factor R, viz

Rx +
fv/r(

r g
f
− v

)Rv = − g(
r g

f
− v

)2R. (3.1.68)

Let us now make the ansatz

R =

(
r g

f
− v

)

T (x, v)
. (3.1.69)

Inserting this into (3.1.68), we obtain the following equation for determining T (x, v),

D[T ] :=

(
r
g

f
− v

)
∂T

∂x
+

fv

r

∂T

∂v
= fT. (3.1.70)

As Chandrasekar et al have shown, it is not necessary to obtain the general solution of
(3.1.70). Any particular solution of it is sufficient to determine a first integral, when it exists.
In principle this leads to a considerable simplification, which cannot be underestimated.
For the problem of determining a particular solution of T , we shall use the technique of
Darboux polynomials. Notice that if f(x) be a polynomial, then in view of (3.1.64), we
conclude that g/f must also be a polynomial. For the vector field D as defined by (3.1.70)
we find that

D[h1] = D[v] =
f

r
h1 (3.1.71)

and

D[h2] = D

[
g

f
− (r − 1)

r(r − 2)
v

]
=

(r − 1)

r
fh2. (3.1.72)

In other words,

h1 = vandh2 =
g

f
− (r − 1)

r(r − 2)
v

are Darboux polynomials of the vector field D with cofactors

λ1 =
f

r
andλ2 =

(r − 1)

r
f

respectively. Consequently, for T (x, v) = hn1
1 hn2

2 , we can find rational numbers such that
D[T ] = fT namely n1 = n2 = 1. Thus we have the following particular solution of (3.1.70):

T (x, v) = v

(
g

f
− (r − 1)

r(r − 2)
v

)
. (3.1.73)
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This completes the determination of the integrating factor R as

Iv = −R = − rg/f − v

v/r(rg/f − (r − 1)v/(r − 2))
and Ix = −RS =

f

rg/f − (r − 1)v/(r − 2)
.

(3.1.74)
The corresponding first integral is now given by

I(x, v) = log




(
r g

f
− r−1

r−2
v
)

vr−1




r
r−1

, r 6= 0, 1, 2, (3.1.75)

which essentially means that

C(x, v) =




(
r g

f
− r−1

r−2
v
)

vr−1


 , r 6= 0, 1, 2 (3.1.76)

is a constant of motion.
Of course one could have obtained this first integral in a much more simpler way, by observing
that (3.1.70) admits a solution T = vr. This in turn gives R = (rg/f − v)/vr and RS =
−fv1−r/r from which one gets the first integral (3.1.76).

A Liénard type nonlinear oscillator – the second order Riccati equation

We illustrate the above method with a well known example of the modified Emden equation

ẍ + αxẋ + βx3 = 0. (3.1.77)

Here f(x) = αx and g(x) = βx3. The condition (3.1.64) gives a quadratic equation for the
parameter r, with solution

1

r
=

1

2

[
1±

√
1− 8β/α2

]
.

If we choose a particular value of r, then these solutions determines a relation between the
parameters α and β of the equation; conversely, given the parameters it fixes the value of r.
For example, the choice r = 3 yields β = α2

9
. Thus setting α = 3k we have β = k2 and the

equation becomes
ẍ + 3kxẋ + k2x3 = 0. (3.1.78)

This particular form is often called the second Riccati equation (and is also the Painlevé-
Gambier equation VI with q(Z) = 0 of [44]). Its first integral from (3.1.76) is therefore

C1(x, v) =
kx2 − 2v

v2
. (3.1.79)

The phase flow for the equation, under these circumstances, as determined from (3.1.62) and
(3.1.63) is

dv

dx
=

2kxv

kx2 − 2v
,
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which may be separated by using the above expression for C1 viz

dv

dx
=

2kx

C1v
⇒ 1

2
C1v

2 − kx2 = K2

where K2 is an integration constant.
If we desire to express C1(x, v) in terms of x and the actual velocity ẋ, then we simply
eliminate v using (3.1.62) to get

C1(x, ẋ) = − 2ẋ + kx2

(ẋ + kx2)2
,

which coincides with the results in [5]. In fact it has been shown by Cariñena et al [5] that
this first integral plays the role of the Hamiltonian for (3.1.78).

3.1.3 A generalized 2D- Kepler system

In [8], the authors considered a system of second-order ODE’s of the generic form

ẍ =
P1

Q1

= φ1 and ÿ =
P2

Q2

= φ2

where it is assumed that φi(i = 1, 2) depend on t, x, ẋ, y, ẏ in general. They illustrate the
general procedure and finish off with the following example of the two-dimensional Kepler
problem.

ẍ = − x

(x2 + y2)
3
2

, ÿ = − y

(x2 + y2)
3
2

. (3.1.80)

Their analysis yielded the following first integrals:

I1 =
1

2
(ẋ2 + ẏ2)− 1√

x2 + y2

I2 = yẋ− xẏ

I3 = ẋ(yẋ− xẏ)− y√
x2 + y2

. (3.1.81)

corresponding to the Hamiltonian, the angular momentum and the Runge Lenz vector re-
spectively.
We shall consider a system which is similar to this, but of the form:

ẍ = − x(x2 + b)

(x2 + y2)
3
2

= − xg1(x, y)

(x2 + y2)
3
2

,

ÿ = −y(3x2 + 2y2 + b)

(x2 + y2)
3
2

= − yg2(x, y)

(x2 + y2)
3
2

, (3.1.82)
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where

g1(x, y) = (x2 + b), and g2(x, y) = (3x2 + 2y2 + b). (3.1.83)

Assuming I to be a first integral of the coupled system such that

dI = Itdt + Ixdx + Iydy + Iẋdẋ + Iẏdẏ = 0,

let us write the coupled system of equations as:

(φ1 + S1ẋ) dt− S1dx− dẋ = 0, (3.1.84)

(φ2 + S2ẏ) dt− S2dy − dẏ = 0, (3.1.85)

then we must have

It = R1(φ1 + S1ẋ) + R2(φ2 + S2ẏ),

Ix = −R1S1,

Iy = −R2S2,

Iẋ = −R1,

Iẏ = −R2. (3.1.86)

Here R1 and R2 represent the respective integrating factors of the system of equations
(3.1.84)-( 3.1.85). Compatibility of the set of equations (3.1.86) then yields the following:

D[S1] = −φ1x − R2

R1

φ2x +
R2

R1

S1φ2ẋ + S1φ1ẋ + S2
1 ,

D[S2] = −φ2y − R1

R2

φ1y +
R1

R2

S2φ1ẏ + S2φ2ẏ + S2
2 ,

D[R1] = (R1φ1ẋ + R2φ2ẋ + R1S1),

D[R2] = −(R2φ2ẏ + R1φ1ẏ + R2S2),

S1R1y = R1S1y + S2R2x + R2S2x,

R1x =
∂

∂ẋ
(R1S1), R2y =

∂

∂ẏ
(R2S2),

R1y =
∂

∂ẋ
(R2S2), R2x =

∂

∂ẏ
(R1S1), R1ẏ = R2ẋ,

Where D represents the vector field

D =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ φ1

∂

∂ẋ
+ φ2

∂

∂ẏ
.
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The problem is therefore reduced to finding solutions (particular) satisfying these equations.
For the system (3.1.82) we find a particular solution to be the following:

R1 = ẋ, R2 = ẏ, S1 =
x(x2 + b)

ẋ(x2 + y2)
3
2

, S2 =
y(3x2 + 2y2 + b)

ẏ(x2 + y2)
3
2

.

With these values of Ri, Si (i = 1, 2) we obtain the following first integral:

I(x, y, ẋ, ẏ) = −
[

1

2
(ẋ2 + ẏ2) +

x2 + 2y2 − b√
x2 + y2

]
. (3.1.87)

In fact it is easy to verify that this integral is actually the Hamiltonian. However, we
have not been able to deduce the analogs of the angular momentum or the Lenz vector for
this case.

We shall next consider a nonplanar system of ODEs corresponding to a generalized
version of the Raychaudhuri equation to give further illustration of the method outlined
above.
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3.2 The Generalized Raychaudhuri equation in a two

dimensional deformable media and its first inte-

grals

The Raychaudhuri equations constitute a coupled first-order system of nonlinear ODEs which
were originally introduced in the context of cosmology in 1955 [54]. Basically these equations
represent largely geometric/mathematical statements about the nature of geodesics in a
Riemannian/pseudo-Riemannian geometry. They describe the kinematics of flows (i.e., the
integral curves) generated by a vector field. The flows may be geodesic or non-geodesic in
nature. The kinematic nature of these equations means that one does not ask how the flow
is generated but is only interested in the characteristics of such flows. In order to understand
which quantities may characterize a flow suppose λ denotes the parameter labeling points on
the curves in the flow, then, the gradient of the velocity field, which is a second rank tensor,
can be split up into a symmetric traceless part, an anti symmetric part and lastly the trace.
These three quantities define the shear, rotation and the expansion of the flow and are the
variables of interest.

In [19, 49], the authors considered geodesic flows on the surface of a deformable media
and deduced how the expansion, shear and rotation of such flows evolve with time. The
deformations of the media (at least locally) may be characterized in terms of time evolution
of a deformation vector (θ, σ, w), where θ, σ and w represent the expansion(E), shear(S) and
rotation(R) respectively. The kinematics can be quantified in terms of these (ESR) variables;
and leads to the Raychaudhuri equation for a two dimensional curved surface of constant
curvature. When the exact solutions of the geodesic equations are used in them, one is led to
the following system, after suitable relabelling of the variables involved (see eq.(2.20)-(2.23)
of [19]):

ẋ +
1

2
x2 + αx + 2(y2 + z2 − t2) + 2β = 0 (3.2.1)

ẏ + (α + x)y + γ = 0 (3.2.2)

ż + (α + x)z + δ = 0 (3.2.3)

ṫ + (α + x)t = 0 (3.2.4)

One must not interpret t here as the time, it is simply at par with variables x, y, z. However
ẋ, ẏ... etc., stand for the derivative of these variables with respect to the appropriate ‘temporal
variable’ relevant to the model. Thus from a mathematical point of view the above equations
form a non-planar dynamical system. Note that α, β, γ and δ are suitable parameters of the
model.
The vector field D is in this case given by

−D = (
1

2
x2+αx+2(y2+z2−t2)+2β)

∂

∂x
+((α+x)y+γ)

∂

∂y
+((α+x)z+δ)

∂

∂z
+((α+x)t)

∂

∂t
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It can be easily verified that with f1 = − δ
γ
y + z we have,

D[f1] = D[− δ

γ
y + z] = −(α + x)f1, so that λ1 = −(α + x) (3.2.5)

Similarly we find, f2 = t, to be another Darboux polynomial whose associated eigenpolyno-
mial is again λ2 = −(α + x) = λ1. Consequently the exactness condition, D[R] = 0, which
implies,

∑2
i niλi = 0, leads to (α+x)(n1 +n2) = 0 or n2 = −n1. Making the choice n1 = −1

we obtain the first integral given by

I1(x, y, z, t) =
t(

− δ
γ
y + z

) . (3.2.6)

3.2.1 Additional new first integrals

On the other hand for the specific choice of the parameters, γ = δ = 0, one finds the following
Darboux polynomials:

D[gi] = −(α + x)gi (i = 1, 2, 3) with g1 = y, g2 = z, g3 = t, (3.2.7)

and
D[g4] := D[z2 + t2 + zt] = −2(α + x)(z2 + t2 + zt). (3.2.8)

Hence, the exactness condition D[R] = 0 implies

∑
i

niλi = 0 ⇒ (n1 + n2 + n3 + 2n4)(α + x) = 0. (3.2.9)

Choosing n1 = n2 = 1 and n3 = −1, n4 = −1
2

we get another first integral of the form

I =
yz

t(z2 + t2 + zt)
1
2

. (3.2.10)

It will be noticed that all the above first integrals are independent of the variable x. To
get a first integral explicitly dependent on x, y, z, t we notice that when all the parameters
α = β = γ = δ = 0 then the following Darboux polynomial depending on x is obtainable

−D[g1] := −D[y2 + z2 − t2 − 1

4
x2] = x(y2 + z2 − t2 − 1

4
x2) (3.2.11)

with associated eigenpolynomial given by λ1 = −x. In addition the following are Darboux
polynomials of degree two:

−D[g2] := −D[zt] = 2xg2 ⇒ λ2 = −2x,

−D[g3] := −D[yz] = 2xg3 ⇒ λ3 = −2x,
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−D[g4] := −D[yt] = 2xg4 ⇒ λ4 = −2x. (3.2.12)

The exactness condition

∑
i

niλi = 0 implies − x[n1 + 2(n2 + n3 + n4)] = 0,

which may then be satisfied by the following choice n2 = n3 = n4 = −1
2

and n1 = 3, leading
to the rational first integral

I(x, y, z, t) =
(y2 + z2 − t2 − 1

4
x2)3

yzt
. (3.2.13)

In this chapter the method devised by Prelle and Singer for first order ODEs using
Darboux polynomials has been extended and adopted to two generic classes of second-order
equations namely the Jacobi equation and the Liénard equation. The former includes many
of the Painlevé-Gambier (PG) equations listed in the Ince’s book while the latter includes
many physical problems of interest. We have derived a general formula for a time indepen-
dent first integral corresponding to the reduction, ψt = Bt = 0, of the Jacobi equation. In
particular we consider two specific equations PG-XII and PG-XXII and for the latter we
have obtained a new time dependent rational first integral. For the Liénard class of equa-
tions we have illustrated how the extended Prelle-Singer technique allows us to obtain the
integrating factor and associated first integral when the function f and g are polynomials.
Explicit results are presented for the second Riccati equation. Further generalization to a
coupled second-order system describing a 2D Kepler system are also presented. Finally after
a brief introduction to the Raychaudhuri equation we have deduced first integrals for specific
parameter values of generalized system of this equation using Darboux theory.

In the following chapter we shall show how the extended Prelle-Singer technique may
be encapsulated within the general theory of Lie symmetries thereby illustrating the power
and depth of Lie’s seminal work.



Chapter 4

Adjoint Symmetry Equations,
Integrating Factors and Solutions

4.1 Introduction

In this chapter we consider the role of the adjoint symmetry equation in determining explicit
integrating factors of nonlinear ODEs. We also review briefly the so called extended Prelle-
Singer method developed by the authors [8, 9, 10] and show that it is actually a reformulation
of the adjoint symmetry equation as a first-order system.

As is well known symmetries play a crucial role in the solutions of differential equations.
In fact much of the existing literature on symmetries of ODEs is devoted to what are known
as Lie point symmetries. We begin by considering an n-th order ODE or its equivalent PDE
in (n + 1) variables as given by (2.5.38)/(2.5.39). Such an ODE/PDE is said to admit a Lie
point symmetry with generator

X = ξ(x, y)∂x + η(x, y)∂y + η(1)∂y′ + · · ·+ η(k)∂y(k) , where η(i) =
dη(i−1)

dx
− y(i) dξ

dx
,

if
[X, A] = gA (4.1.1)

holds. Here g = g(x, y, y′, . . . , y(n−1)) is some function and η(i)’s denote the prolongations
of the vector field (infinitesimal generators) X(0) = ξ(x, y)∂x + η(x, y)∂y. For an n-th order
ODE (2.5.38) the infinitesimal symmetry generators, when they exist, are determined from
the linearized symmetry condition (2.5.46)

η(n) = ξwx + ηwy + η(1)wy′ + · · ·+ η(n−1)wy(n−1)

when (2.5.38) holds [41]. In terms of the characteristic, Q := η − y′ξ, this condition is given
by (2.5.47), namely

AnQ− wy(n−1)A(n−1)Q− · · · − wy′AQ− wyQ = 0.

85
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For example when y′′ = w(x, y, y′), the linearized symmetry condition is a second order linear
PDE

A2Q− wy′AQ− wyQ = 0, (4.1.2)

with the vector field given by

A = ∂x + y′∂y + w(x, y, y′)∂y′ .

4.2 Adjoint symmetries and Integrating factors

The following equation is known as the adjoint of the linearized symmetry condition (4.1.2),
and its solutions are called the adjoint symmetries

AnΛ + An−1(wy(n−1)Λ)− An−2(wy(n−2)Λ) + · · ·+ (−1)n−1wyΛ = 0. (4.2.1)

It must be stressed however,that these solutions are neither symmetries nor generators of
symmetries, and it is more appropriate to call a solution as a cocharacteristic[41]. Normally
a systematic procedure for finding the solutions of (4.2.1) is by making an ansatz for Λ; for
example, to assume that they are independent of y(n−1) or to even assume a suitable rational
structure. In order to illustrate the connection between the methods used by authors of
[8, 9, 10] and the adjoint symmetry equation consider the equation

y(n) = w(x, y, y′, . . . , y(n−1)), (4.2.2)

together with the base one-forms dx, (dy − y′dx), . . . , (dy(n−1) − wdx). The null form ob-
tained by multiplying, all but the first one-form by functions Si(x, y, y′, . . . , y(n−1)) where
i = 0, . . . , n− 1 and demanding that after addition the resultant one-form be exact is

−(S0y
′+S1y

′′+ · · ·+Sn−2y
(n−1)+Sn−1w)dx+(S0dy+S1dy′+ · · ·+Sn−2dy(n−2)+Sn−1dy(n−1))

= dI(x, y, y′, . . . , y(n−1)) = 0. (4.2.3)

This implies
Ix = −(S0y

′ + S1y
′′ + · · ·+ Sn−2y

(n−2) + wSn−1) (4.2.4)

Iy = S0, Iy′ = S1, . . . , Iy(n−1) = Sn−1. (4.2.5)

Clearly I is a first integral of the equation (4.2.2), provided it satisfies the integrability
criteria

Ixy(j) = Iy(j)x, j = 0, . . . , n− 1, (4.2.6)

Iy(j)y(k) = Iy(k)y(j) , 0 ≤ j < k ≤ n− 1. (4.2.7)

The vector field associated with (4.2.2) is

A =
∂

∂x
+ y′

∂

∂y
+ · · ·+ w

∂

∂y(n−1)
, (4.2.8)
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in terms of which the integrability conditions (4.2.6) may be expressed as follows:

−A[Sn−1] = (wy(n−1)Sn−1 + Sn−2), (4.2.9)

−A[Sn−2] = (wy(n−2)Sn−1 + Sn−3), (4.2.10)

...

−A[S1] = (wy′Sn−1 + S0), (4.2.11)

−A[S0] = wySn−1. (4.2.12)

The remaining integrability conditions (4.2.7) are all satisfied if

∂Sn−1

∂y(j)
=

∂Sj

∂y(n−1)
, 0 ≤ j ≤ n− 2. (4.2.13)

Our primary interest is to know Sn−1, since the remaining ones can be determined alge-
braically from eqns. (4.2.9)-(4.2.12) in a recursive manner. Eliminating the Si’s by succes-
sively applying the vector field A to eqn.(4.2.9) and using the remaining ones, we obtain
finally

An[Sn−1] + An−1[wy(n−1)Sn−1]− An−2[wy(n−2)Sn−1] + · · ·+ (−1)n−1wySn−1 = 0. (4.2.14)

But this is precisely the adjoint equation corresponding to the linearized symmetry equation
(4.2.1). Thus the integrating factors of eqn. (3.1.5) are just the solutions of (4.2.14), which
fulfil the integrability criteria stated in eqn.(4.2.13). Consequently, determination of the
integrating factor Sn−1 of (4.2.2) is basically equivalent to finding a solution of this equation.
(The connection to the notation used in [10] is given by the following substitutions: Sj −→
RSj+1,∀ j = 0, . . . , n − 3 and Sn−1 −→ R). The usual procedure to tackle such PDEs
is to make a ansatz for Sn−1, for example assuming it to be a polynomial in y(n−1) of some
suitable degree, and then obtaining its coefficients in a recursive manner. In their work,
Chandrasekhar et al have assumed a rational form for Sn−1. As a consequence, instead
of solving the adjoint equation directly, they solved the set (4.2.9)-(4.2.12), of first order
equations by making appropriate ansätze for the Si’s. Suppose Λi be the solution(s) of the
adjoint equation. Setting, Sn−1 = Λi, one can calculate the remaining Sj’s, in a recursive
manner and check if (4.2.13) holds. In the event such a integrating factor exists and satisfies
the integrability condition, its associated first integral may be obtained from the relation

I i =

∫
Si

0(dy − y′dx) + Si
1(dy′ − y′′dx) + · · ·Si

n−1(dy(n−1) − wdx). (4.2.15)

Essentially therefore, one can choose to either solve the adjoint equation directly and obtain
Sn−1 through some suitable ansatz, or make suitable ansätze for the Sk’s and solve a set of
n first order PDEs. In general the former involves solving a single higher-order equation,
while the latter involves solving a system of first-order linear PDEs.
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4.2.1 Some illustrative examples

Example 4.2.1 y′′ = w(x, y, y′) = 3y′2
y

+ y′
x

Here the system of coupled first-order PDEs, for the unknown functions S0, S1 are:

A[S1] = −(wy′S1 + S0) (4.2.16)

A[S0] = −wyS1 (4.2.17)

where A = ∂x + y′∂y + w∂y′ ; the integrability condition is simply

S1y = S0y′ . (4.2.18)

and the adjoint equation is

A2[S1] + A[wy′S1]− wyS1 = 0. (4.2.19)

Assuming Λ = S1 to be a solution of (4.2.19) independent of y′, we have upon equating the
coefficients of different powers of y′ the following set of equations:

15Λ + 9yΛy + y2Λyy = 0

3Λ + 3xΛx + yΛy + xyΛxy = 0

−Λ + xΛx + x2Λxx = 0.

Their structure suggests an ansatz of the form Λ = xαyβ. One can verify that this leads to
four solutions, namely:

Λ1(x, y) =
x

y3
, Λ2(x, y) =

1

xy3
, Λ3(x, y) =

1

xy5
, and Λ4(x, y) =

x

y5
.

However, only Λ1, Λ2 are acceptable, as the others do not satisfy the integrability criterion
(4.2.13). The results are summarized below, along with the respective first integrals:

(i) Λ1 = S1
1 =

x

y3
, S1

0 = − x

y3
(
2

x
+

3y′

y
), with I1(x, y, y′) =

xy′ + y

y3
.

(ii) Λ2 = S2
1 =

1

xy3
, S2

0 = − 3y′

xy4
, with I2(x, y, y′) =

y′

xy3
.

The first integral I2 was obtained by Duarte et al in [23]. However, I1, was not obtained by
them.
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Example 4.2.2
y′′ = w(x, y, y′) = −(kyy′ + λy)

Here k and λ are constants and the equation represents a damped harmonic oscillator. As
before one has to solve the adjoint symmetry equation (4.2.1), for n = 2, namely,

(wxy′ + y′wyy′ + wwy′y′ − wy)Λ + wy′Λx + (w + y′wy′)Λy + (wx + 2wwy′ + y′wy)Λy′ + Λxx

+2y′Λxy + y′2Λyy + 2wΛxy′ + 2wy′Λyy′ + w2Λy′y′ = 0

Solving this PDE is a rather daunting task even when w(x, y, y′) ia a fairly simple. It is
therefore natural to make certain simplifying assumptions regarding the functional depen-
dence of Λ. For instance one can begin by assuming Λ to be independent of a particular
variable, say x, and see that if that leads to a more manageable form of the adjoint equation.
Alternatively, one may at the very outset assume that Λ depends on only one of the three
variables x, y or y′. The choice of procedure to be adopted is one of sheer convenience. We
illustrate this by first making the following assumption, Λx = 0, which leads to

(wxy′ + y′wyy′ + wwy′y′ − wy)Λ + (w + y′wy′)Λy + (wx + 2wwy′ + y′wy)Λy′

+y′2Λyy + 2wy′Λyy′ + w2Λy′y′ = 0

This is a linear parabolic PDE. Since w = −(kyy′ + λy) we have

wx = wy′y′ = 0, wy′ = −ky, wy = −(ky′ + λ), and wyy′ = −k.

As solving this PDE is still rather formidable, let us further assume Λy = 0. In other words
Λ is just a function of y′ and our equation simplifies further to

(wxy′ + y′wyy′ + wwy′y′ − wy)Λ + (wx + 2wwy′ + y′wy′)Λy′ + w2Λy′y′ = 0.

Plugging in the expressions for partial derivatives of w and equating the coefficients of
different powers of y, then leads to the following set of equations:

(ky′ + λ)y′Λy′ = λΛ

2kΛy′ + (ky′ + λ)Λy′y′ = 0.

These equations admit the particular solution Λ1(y′) = y′
(ky′+λ)

and one finds with S1
1 = Λ1 =

y′/(ky′ + λ) that S1
0 = y. The integrability condition S1

1y = S1
0y′ is trivially satisfied and the

corresponding first integral is

I1(x, y, y′) = y′ +
1

2
ky2 − λ

k
log(ky′ + λ).

Note that this first integral is independent of x by construction. For such first integrals, the
method devised by Chandrasekhar et al [10] allows us to determine the form of S0 a priori.
We dwell on this aspect in the following subsection.



90 Adjoint Symmetry Equations, Integrating Factors and Solutions

4.2.2 First integrals independent of a particular coordinate

An interesting feature occurs when the first integral, I, is independent of a particular variable,
say x, i.e., Ix = 0. Then in general, (4.2.4) implies

S0 = − 1

y′
(
y′′S1 + · · ·+ Sn−2y

(n−1) + Sn−1w
)
,

which enables us to eliminate S0, and causes a reduction in the order of the equations for
determining the integrating factor. For instance in case of a second-order ODE, we have
S0y

′ + wS1 = 0, leading to S0 = −w
y′S1. As a result, one is left with a first-order PDE for

determining S1 namely

A[S1] = −(wy′ − w

y
)S1. (4.2.20)

On the other hand for a third-order equation, we have

S0 = −y′′S1 + wS2

y′
.

Elimination of S0, from the system of equations (4.2.9)-(4.2.12) with n = 3, then requires us
to solve for S1 and S2 from the coupled system:

A[S2] = −(wy′′S2 + S1)

A[S1] = −
(

(wy′ − w

y′
)S2 − y′′

y′
S1

)
,

which are equivalent to the following second-order equation for the integrating factor S2:

A2S2 + A(wy′′S2)− y′′

y′
AS2 − {(wy′ − w

y′
) +

y′′

y′
wy′′}S2 = 0. (4.2.21)

Thus the absence of one ’coordinate’ in a first integral causes only marginal simplification,
namely a reduction, by one, in the order of the equation to be solved for the integrating
factor. Nevertheless this is extremely useful for second-order equations, y′′ = w(x, y, y′),
since one is then required to solve a single first-order linear PDE for the integrating factor
S1. This fact was exploited to the hilt in [8, 9]. Although in general for n ≥ 3, the
existence of an x independent first integral, may not always lead to substantial reduction of
computational labor, nevertheless it is instructive to look into the method of the authors of
[8, 9, 10] more carefully, as it has proved to be quite successful in determining first integrals
of many highly nonlinear oscillator type systems. Generally, for equations of the generic
form y′′ = −f1(y)y′ − f0(y), eqn (4.2.20) reduces to

A[S1] = −f0(y)

y′
S1.
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The solution S1
1 of example 4.2.2, suggests the ansatz S1 = y′

h(y,y′) , with the consequence that

A[S1] =
A(y′)

h
− y′

h
Ah = −f0(y)

h
.

The problem now therefore reduces to a determination of the function h(y, y′) from the
following relation (since A(y′) = w), viz,

y′A[h] = (w + f0)h = −f1(y)y′h,

A[h] = −f1(y)h. (4.2.22)

The resulting PDE for h is explicitly given by

y′hy + (−f1y
′ − f0)hy′ = −f1y

′h.

For f1 = ky and f0 = λy, assuming furthermore that h is independent of y we obtain
h(y′) = C(ky′ + λ). Thus once again we get the solutions (after setting constant C = 1),

S1 =
y′

(ky′ + λ)
and S0 = y,

which satisfy the integrability criterion.
As pointed out in [10], it is often more convenient to modify the ansatz for S1 to, S1 = y′

h(y,y′)r ,
to handle more complicated situations.

For generic equations of the form (Liénard type)

y′′ = −f1(y)y′ − f0(y)

with this ansatz for S1, (4.2.22) is modified to

rA[h] = −f1(y)h. (4.2.23)

Assuming, h(y, y′) = A′(y)+B(y)y′+C(y)y′2, substitution into (4.2.23) leads to the following
set of equations for determining the unknown functions A,B and C upon equating coefficients
of different powers of y′, namely

Cy = 0, rBy = (2rf0 − f1)C, rA′
y = (rf0 − f1)B − 2rCf1 and rf0B = f1A

′. (4.2.24)

Suppose now
f0(y) = λyξ and f1(y) = µyη,

where λ and µ are parameters and ξ and η are constants. We obtain then the following
solutions for C,B and A:
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C(y) = γ, rB(y) = µγ
(2r − 1)

η + 1
yη+1 + β

rA′(y) =
2λrγ

ξ + 1
yξ+1 + µ(r − 1)

[
(2r − 1)µγ

2r(η + 1)2
y2(η+1) +

β

r(η + 1)
yη+1

]
+ α,

where α, β and γ are constants of integration. From the last condition in eqn. (4.2.24), i.e.,
rf0B = f1A

′, it follows, assuming ξ 6= η, that α = β = 0 and leads to the following relation,

λr

[
(2r − 1)

(η + 1)
− 2

(ξ + 1)

]
yξ+η+1 =

µ2(r − 1)(2r − 1)

2r(η + 1)2
y3η+2. (4.2.25)

One can then identify two possible cases.
(a) When, r = 1, we have ξ = 2η + 1, A′(y) = λγ

(η+1)
y2(η+1) and B(y) = µγ

(η+1)
y(η+1). The

corresponding integrating factor is given by

Sa
1 =

y′

[ λγ
(η+1)

y2(η+1) + µγ
(η+1)

y(η+1)y′ + γy′2]
and Sa

0 =
µyηy′ + λy2η+1

y′
S1.

(b) For, r 6= 1, assuming the exponents of y in (4.2.25) to be equal we find once again
ξ = 2η+1. Upon equating their coefficients we obtain a quadratic equation for the exponent
r occurring in the denominator of the integrating factor with solution

r =
µ2

4λ(η + 1)

[
1±

√
1− 4λ

µ2
(η + 1)

]
.

Therefore, in this case Sb
1 = y′

hr where

h(y, y′) =
γ

(η + 1)

[
λ + µ2 (r − 1)(2r − 1)

2r2(η + 1)

]
y2(η+1) +

γµ(2r − 1)

r(η + 1)
yη+1y′ + γy′2.

4.3 Coupled second-order equations

In this section we consider an application of the adjoint equation to a coupled system of
equations of the form

ẍ = φ1(x, y) and ÿ = φ2(x, y). (4.3.1)

As before, consider the following base one forms (dx−ẋdt), (dy−ẏdt), (dẋ−φ1dt), (dẏ−φ2dt)
Let S1, S2 and R1, R2 be functions such that

S1(dx− ẋdt) + S2(dy− ẏdt) + R1(dẋ− φ1dt) + R2(dẏ− φ2dt) = dI(t, x, y, ẋ, ẏ) = 0. (4.3.2)

Hence
It = −(S1ẋ + S2ẏ + R1φ1 + R2φ2), (4.3.3)
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Ix = S1, Iy = S2, Iẋ = R1, Iẏ = R2. (4.3.4)

The functions R1 and R2 are the integrating factors. Compatibility of the set of equations.
(4.3.3) and (4.3.4) namely:

Itx = Ixt, Ity = Iyt, Itẋ = Iẋt, Itẏ = Iẏt,

Ixy = Iyx, Ixẋ = Iẋx, Ixẏ = Iẏx, Iyẋ = Iẋy, Iyẏ = Iẏy, (4.3.5)

requires that the following hold:

D[R1] = −(S1 + R1φ1ẋ + R2φ2ẋ), (4.3.6)

D[R2] = −(S2 + R1φ1ẏ + R2φ2ẏ), (4.3.7)

D[S1] = −(R1φ1x + R2φ2x), (4.3.8)

D[S2] = −(R1φ1y + R2φ2y), (4.3.9)

where D = ∂t + ẋ∂x + ẏ∂y + φ1∂ẋ + φ2∂ẏ. It is evident that once R1 and R2 are known the
remaining S1 and S2 can be determined algebraically from (4.3.6) and (4.3.7). Since our
basic aim is to determine the integrating factors, we can eliminate, say S1, by differentiating
(4.3.6) and using (4.3.8) to get

D2[R1] + D[R1φ1ẋ + R2φ2ẋ]− (R1φ1x + R2φ2x) = 0 (4.3.10)

Similarly eliminating S2 yields

D2[R2] + D[R1φ1ẏ + R2φ2ẏ]− (R1φ1y + R2φ2y) = 0. (4.3.11)

Equations (4.3.10)-(4.3.11) constitute the coupled version of the adjoint equation (4.2.1)
when n = 2.
One needs to check, of course, that the solutions of the coupled adjoint equations indeed
satisfy the compatibility conditions (4.3.5). In general one employs an ansatz for R1 and
R2 in order to solve the system of PDEs (4.3.10)-(4.3.11). From a knowledge of R1, R2 and
S1, S2 it is straightforward to obtain the first integral from

I =

∫
S1(dx− ẋdt) + S2(dy − ẏdt) + R1(dẋ− φ1dt) + R2(dẏ − φ2dt). (4.3.12)
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Example 4.3.1

Consider the following system of second-order equations:

ẍ + α
x2 g(u)− λ

x3 = 0

ÿ + β
x2 f(u)− µ

y3 = 0, u = y
x
.

(4.3.13)

Here α, β, λ and µ are parameters and f and g are arbitrary functions. Writing these
equations in the form ẍ = φ1(x, y) and ÿ = φ2(x, y), we identify

φ1(x, y) = − α

x2
g(u) +

λ

x3
and φ2(x, y) = − β

x2
f(u) +

µ

y3

Note here that φ1 and φ2 are velocity independent and for a time independent first integral,
It = 0, we may take D = ẋ∂x + ẏ∂y + φ1∂ẋ + φ2∂ẏ. In that event with the following ansatz
for R1 and R2 namely

R1 = a1(x, y)ẋ + a2(x, y)ẏ and R2 = b1(x, y)ẋ + b2(x, y)ẏ, (4.3.14)

(4.3.10) and (4.3.11) yield the following equations:

ẋ3a1xx+ẋ2ẏ(a2xx+2a1xy)+ẋẏ2(2a2xy+a1yy)+a2yyẏ
3+ẋ{(φ1a1+φ2a2)x+2a1xφ1+(a2x+a1y)φ2}

+ẏ{(φ1a1 +φ2a2)y +2a2yφ2 +(a2x +a1y)φ1} = ẋ(φ1xa1 +φ2xb1)+ ẏ(φ1xa2 +φ2xb2), (4.3.15)

ẋ3b1xx+ẋ2ẏ(b2xx+2b1xy)+ẋẏ2(2b2xy +b1yy)+b2yyẏ
3+ẋ{(φ1b1+φ2b2)x+2b1xφ1+(b2x+b1y)φ2}

+ẏ{(φ1b1 + φ2b2)y + 2b2yφ2 + (b2x + b1y)φ1} = ẋ(φ1ya1 + φ2yb1) + ẏ(φ1ya2 + φ2yb2). (4.3.16)

Equating coefficients of different powers of the velocities we get the following system of
equations:

a1xx = 0, a2xx + 2a1xy = 0, a1yy + 2a2xy = 0, a2yy = 0, (4.3.17)

(φ1a1 + φ2a2)x + 2a1xφ1 + (a2x + a1y)φ2 = (φ1xa1 + φ2xb1), (4.3.18)

(φ1a1 + φ2a2)y + 2a2yφ2 + (a2x + a1y)φ1 = (φ1xa2 + φ2xb2) (4.3.19)

b1xx = 0, b2xx + 2b1xy = 0, b1yy + 2b2xy = 0, a2yy = 0, (4.3.20)

(φ1b1 + φ2b2)x + 2b1xφ1 + (b2x + b1y)φ2 = (φ1ya1 + φ2yb1), (4.3.21)

(φ1b1 + φ2b2)y + 2b2yφ2 + (b2x + b1y)φ1 = (φ1ya2 + φ2yb2). (4.3.22)

Observes that the choice ak = constant and bk = constant k = 1, 2 satisfies (4.3.17) and
(4.3.20), while there remaining equations then simplify to

φ2x(b1 − a2) = 0, φ1y(a2 − b1) = 0,

φ1x − φ2ya2 − φ1ya1 + φ2xb2 = 0,
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φ1ya1 + (φ2y − φ1x)b1 − φ2xb2 = 0.

The first two equations imply, a2 = b1, which renders the second and the third equations
identical, namely

(φ1x − φ2y)a2 − φ1ya1 + φ2xb2 = 0. (4.3.23)

Clearly if the system (4.3.13) is derivable from a potential then it is necessary that φ1y = φ2x.
With this in mind (4.3.23) can be satisfied by making the choice a2 = b1 = 0 whilst a1 and
b2 are arbitrary. Therefore the choice a1 = b2 = 1 and a2 = b1 = 0 leads to the following
solutions:

R1 = ẋ R2 = ẏ. (4.3.24)

On the other hand the solution of S1 and S2 from (4.3.6) and (4.3.7) are then found to be

S1 = −φ1 =
α

x2
g(u)− λ

x3

S2 = −φ2 =
β

x2
f(u)− µ

y3
, u =

y

x

Using the above values of Ri and Si(i = 1, 2) we obtain from (4.3.12) the first integral

I(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) +

λ

2x2
+

µ

2y2
+ N(x, y),

where

N(x, y) =

∫
α

x2
g(u)dx +

∫
β

x2
f(u)dy.

The condition, φ1y = φ2x, translates to

αg′(u) + 2βf(u) + βuf ′(u) = 0. (4.3.25)

Using this condition, N(x, y), may be evaluated and we find that

N(x, y) = −β

x

(α

β
g(u) + uf(u)

)
.

Hence a first integral for the system of second-order equation is given by

I(x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2) +

λ

2x2
+

µ

2y2
− β

x

(α

β
g(u) + uf(u)

)
. (4.3.26)

Let us now look for another solution set of the coupled adjoint equations for R1 and R2. It
is easily verified that

a1(x, y) = y2, a2(x, y) = −xy = b1(x, y) and b2(x, y) = x2 (4.3.27)
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satisfy (4.3.17) and (4.3.20) while (4.3.18) and (4.3.22) are identically satisfied. The remain-
ing equations (4.3.19) and (4.3.21) become identical and reduce to the following equation:

3(yφ1 − xφ2) = (φ2y − φ1x)xy − φ1yy
2 + φ2xx

2. (4.3.28)

Substituting the values of φi(i = 1, 2) and their derivatives leads to the following condition
on the function f and g, namely:

αug(u)− βf(u) = 0, u =
y

x
. (4.3.29)

From (4.3.27) we derive the following solution for Ri(i = 1, 2):

R1 = −y(xẏ − yẋ) and R2 = x(xẏ − yẋ). (4.3.30)

The corresponding values of Si(i = 1, 2) are

S1 = ẏ(xẏ − yẋ)− λ
y2

x3
+ µ

x

y2
and S2 = −ẋ(xẏ − yẋ) + λ

y

x3
− µ

x2

y3
, (4.3.31)

where use has been made of the condition (4.3.29). Hence from (4.3.12) we obtain another
first integral given by

I =
1

2

[
(yẋ− xẏ)2 +

λ

2

y2

x2
+

µ

2

x2

y2

]
. (4.3.32)

The two first integrals given by (4.3.26) and (4.3.32) will be valid simultaneously provided
we can find functions f and g which satisfy (4.3.25) and (4.3.29). It is easily verified that
these require the functions f and g to be given by

g(u) =
1

(1 + u2)3/2
and f(u) =

α

β

u

(1 + u2)3/2
,

respectively. Under the circumstances the system of second-order equations (4.3.13) reduces
to the following well known system

ẍ +
αx

(x2 + y2)3/2
− λ

x3
= 0 ÿ +

αy

(x2 + y2)3/2
− µ

y3
= 0,

with first integrals

I1 =
1

2
(ẋ2 + ẏ2) +

λ

2x2
+

µ

2y2
− α√

x2 + y2

I2 =
1

2

[
(yẋ− xẏ)2 +

λ

2

y2

x2
+

µ

2

x2

y2

]
.

A more interesting situation from the physical point of view arises when the functions f and
g satisfy condition (4.3.25) but not condition (4.3.29). In that event the system of equations



4.3 Coupled second-order equations 97

(4.3.13) admits just one first integral given by (4.3.26), with f and g satisfying (4.3.25).
In [98] the authors obtained a system of equations similar in structure to (4.3.13), in the
context of the dynamics of stellar systems, with

f(u) = 2(1− ug(u)).

Condition (4.3.25) then leads the following differential equation determining g(u):

(1− 2u2)g′(u) = 2(3ug(u)− 2)

and the first integral from (4.3.26) assumes the form (setting all the parameters equal to
unity)

I =
1

2
(ẋ2 + ẏ2) +

1

2x2
+

1

2y2
+

1

x
(2u + (1− 2u2)g(u)), u =

y

x
.

In fact this first integral serves as Hamiltonian.

In this chapter we have showed that the RS-pair method used by Chandrasekhar et al
to derive first integrals of second-order ODEs can actually be reformulated in terms of the
adjoint symmetry equation of classical Lie symmetry analysis. This illustrates once again
the immense power of symmetries in the analysis of ODEs. In the following chapter we
extend the very notion of a symmetry as defined by (4.1.1) to include what are known as
λ-symmetries and illustrate their use for second and third-order ODEs.
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Chapter 5

λ-Symmetries and Integrating Factors
of Nonlinear ODEs

5.1 Introduction

In this chapter we discuss λ-symmetries of some second-order equations of the Painlevé-
Gambier type and study their relationship with the standard adjoint symmetry equation
used for determining the integrating factor of a second-order ordinary differential equation
(ODE). This is followed by a brief study of the λ-symmetries of certain special types of
third-order ODEs.

Lie symmetry analysis of differential equations provides a powerful and fundamental
framework for the exploitation of systematic procedures leading to the integration by quadra-
ture of ordinary differential equations [41, 82, 100]. This was the main motivation of Sophus
Lie when he created the theory of Lie groups and Lie algebras. In the last few years special
attention has been devoted to a new class of symmetries introduced by Muriel and Romero
[65, 66, 67, 68, 70, 74]. These symmetries are neither Lie point nor Lie-Bäcklund symmetries
and are called λ-symmetries since they are vector fields which depend upon a function λ. If
a system does not have a Lie point symmetry, then Muriel and Romero have demonstrated
that many of the processes of reduction of order can be explained via the invariance of the
equation under λ-symmetries. In other words the new technique of λ-prolongations together
with certain conditions of invariance enables us to introduce the concept of a λ-symmetry
and yields a new method of reduction for ordinary differential equations. A generalization
of the concept of variational symmetry, based on λ-prolongations, has been studied in [70].
This allows us to construct new methods of reduction for Euler-Lagrange equations.

Pucci and Saccomandi [88] have, on the other hand, identified the most general class
of transformation sharing the important properties of standard symmetries concerning re-
duction of a scalar ODE. The approach to this reduction is based upon differential invariants
of telescopic vector fields. Like classical Lie symmetries, if an equation is invariant under a
λ-symmetry, one can obtain a complete set of functionally independent invariants and re-
duce the order of the equation by one. Many applications and extensions of this notion have
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been proposed in the last ten years: these include extensions to systems of ODEs, to partial
differential equations (PDEs) (cf. [32]), applications to variational principles and theorems
of Noether type.
In order to introduce the notion of λ-symmetries let us briefly recollect some of the basic
facts about contact forms and the adjoint symmetry equation.

5.2 Contact forms and first integrals

We confine ourselves to the smooth category of manifolds and maps. Let π : Y → X be a
smooth vector bundle over a k-dimensional base manifold, with l-dimensional fibres. Suppose
that x = (x1, · · · , xk) and y = (y1, · · · , yl) are the local coordinates on X and Y , respectively,
so that sections of Y are prescribed by smooth functions y = s(x). Let πk : Jk(π) → X
be the k-order jet bundle associated to π. Any local section s : X → Y of π generate the
section of Jnπ. We denote jn(s) : X → Jnπ as n-jet, which forms a section of the nth-order
jet bundle. Let γn

s be a graph of section jn(s) and let κn = (xj, yi, y
i
k, · · · , yk1···kn) ∈ γn

s

be a special coordinate system. Consider all graphs γn
s passing through κn. Let Cκn be

the subspace of TκnJnπ spanned by all subspaces Tκnγn
s of these graphs. The space Cκn is

spanned by the vectors

∂

∂xj

+ yi
k

∂

∂yi

+ · · ·+ yi
k1···kn−1k

∂

∂yi
k1···kn−1

.

The distribution Cn : κn → Cκn is called the Cartan distribution on Jnπ. This distribution is
defined by a space of differential 1-forms, which are called the Cartan forms. Before going to
define this form let us switch to multi-index notation. The induced natural coordinates on
Jnπ are given by (x, y(n)) = (· · · xi · · · yK

J · · · ), where derivative coordinates yK
J are written

in multi-index form.
A differential form θ on the jet space Jnπ is called a Cartan form if it is annihilated by

all jets (jn(s))∗θ = 0. In local coordinates every contact one-form on Jnπ can be expressed
as

θα
J = dyα

J −
k∑

i=1

yα
J,idxi, α = 1, · · · , l, 0 ≤ J < n.

In other words, χ ∈ Tκnγn
s belongs to Cκn if and only if χ is a solution of the linear

homogeneous equations in multi-index notation (dyα
J −

∑k
i=1 yα

J,idxi)χ = 0, interested readers
are referred to [53, 82, 83, 92].

Because we are only concerned with the case of one independent and one dependent
variable, the basic contact forms are

θ0 = (dy − y′dx), θ1 = (dy′ − y′′dx), · · · , θn−1 = (dy(n−1) − wdx).

A local diffeomorphism ϕ : Jnπ → Jnπ defines a contact transformation of order n if
it preserves the contact ideal, i.e., if θ is any contact form on Jnπ, then ϕ∗θ is also a contact
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form. Point transformations are those contact transformations that preserve the fibres of
the projection Jnπ → R2 for the case of one independent and one dependent variable.

Consider an nth-order ODE

E :=
{

∆(x, y(n)) := y(n) − w(x, y, ..., y(n−1)) = 0
}

. (5.2.1)

Geometrically E is interpreted as an hyper surface in the space Jn(π) of n-jets of mappings
from R → R and any solution of the system is a section of π the nth-order prolongation of
which is an integral manifold of the restriction Cn|E of the contact distribution to E .

The contact distribution on E can also be described as the annihilator space of the
contact ideal C generated by the 1-forms

dx, (dy − y′dx), (dy′ − y′′dx), ...., (dy(n−1) − wdx).

It is apparent that these contact forms are null over the solution. One can associate with
(5.2.1) the following differential operator (total derivative operator)

A = ∂x + y′∂y + · · ·+ w∂y(n−1) . (5.2.2)

which annihilates all the contact forms θi = (dy(i) − y(i+1)dx).
Now the statements contained in (4.2.2)-(4.2.13) may be summarized into the following

proposition.

Proposition 5.2.1 Consider an nth-order ODE y(n) = w(x, y, · · · , y(n−1)). Given the con-
tact forms θ1 = (dy − y′dx), θ2 = (dy′ − y′′dx), · · · , θn = (dy(n−1) − w(x)dx), if there exists
functions Si (i = 0, 1, · · · (n− 1)) such that dI =

∑n−1
i=0 Siθi is exact, then I is a first integral

of the ODE provided the Si satisfy the following set of coupled PDEs

−A[Sk] = (wy(k)Sn−1 + Sk−1), k = n− 1, ..., 0. (5.2.3)

and
∂Sn−1

∂y(j)
=

∂Sj

∂y(n−1)
, 0 ≤ j ≤ n− 2. (5.2.4)

Illustration

For n = 1 we have a single PDE A[S0] = −wyS0 which determines the integrating factor S0.
The case of rational w may be treated by the Prelle-Singer (semi-)algorithm [26, 87].

In the case of n = 2 with the ODE of the form

y′′ = w(x, y, y′),

and A = ∂x + y′∂y + w∂y′ , we have from (5.2.3)

A[S1] = −(wy′S1 + S0) (5.2.5)



102 λ-Symmetries and Integrating Factors of Nonlinear ODEs

and
A[S0] = −wyS1 (5.2.6)

together with the integrability condition: S1y = S0y′ . Clearly, if we can solve for S0 and S1,
then the first integral may be determined from the relation

I(x, y) =

∫
[S0dy + S1dy′ − (S0y

′ + S1w)dx]. (5.2.7)

Equations (5.2.5) and (5.2.6) may be solved in a number of ways. As mentioned in the
previous chapter one possibility is to make suitable ansätze for S0 and S1 (the most commonly
employed method is to assume that they are polynomials in y′) or we could try to decouple
them to get the corresponding adjoint symmetry equation [41]

A2[S1] + A(wy′S1)− wyS1 = 0. (5.2.8)

By solving this equation we can find S1 and determine S0 algebraically from (5.2.5) and
hence the first integral from (5.2.7).

On the other hand, if we define the ratio λ := −S0

S1
= − Iy

Iy′
, then it follows that

Iy + λIy′ = 0 (5.2.9)

while application of the vector field A to λ as defined above gives

A[λ] = −A[S0]

S1

+
A[S1]

S2
1

S0.

Upon using (5.2.5) and (5.2.6) this yields the following equation

A[λ] + λ2 = wy + wy′λ. (5.2.10)

The last two equations are connected to the existence of λ-symmetries as we explain below
and has been examined in [69] also. This feature also prompts us to study more closely the
case of second and third-order ODEs and to see if one can exploit the notion of integrating
factors to generate λ-symmetries and vice versa.

5.3 λ-symmetries

A vector field X on Y is given by

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
.

This can be uniquely prolonged to a vector field X [k] in Jk(π) by requiring it to preserve the
contact structure. A (system of) differential equation(s) ∆(x, y(1), · · · , y(n)) = 0, admits X
as an exact symmetry if the condition, X [n](∆)|∆=0 = 0, is satisfied.
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Like exact symmetries, λ-symmetries also provide a powerful technique for finding in-
variant solutions. Let λ be a smooth function on J1(π). Then we say that the λ-prolongation
to Jk(π) of a vector field X = ξ∂x + η∂y on Y is the vector field

X [λ,(k)] = ξ∂x + η[λ,(k)]∂yk

with
η[λ,(0)] = η, η[λ,(k)] = Dx

(
η[λ,(k−1)]

)−Dx(ξ)yk + λ
(
η[λ,(k−1)] − ξyk

)
.

Here

Dx =
d

dx

We say that a vector field X [λ,(k)] is a λ-symmetry of E if and only if X [λ,(k)] is tangent to E .
Formally the λ-prolongation of a vector field X can be identified as the ordinary prolongation
of a nonlocal exponential vector field (see Olver [82], exercise 2.31)

X̂ [n] = e
∫

λ dxX [λ,(n)], where X̂ = e
∫

λ dxX.

In general for an nth-order ODE given by ∆(x, y(n)) = 0, if we suppose S0(x, y(n−1))
to be an integrating factor of (5.2.1) so that

S0(∆(x, y(n))) = A(I(x, y(n−1))),

then I(x, y(n−1)) is a first integral and leads to a reduction in order of the given ODE to
I(x, y(n−1)) = c, where A is defined by (5.2.2). Note that for brevity here we are denoting
I(x, y, y′, ..., y(n−1)) as I(x, y(n−1)). Let λ ∈ C∞(M (k)), 0 ≤ k ≤ n− 1 be any solution of the
following PDE

X [λ,(n−1)]I = 0,

(assuming that we know a first integral I), where

X [λ,(n−1)] =
n−1∑
i=0

(A + λ)i(1)
∂

∂y(i)
,

denotes the (n − 1)th-order λ-prolongation of the symmetry generator which has the form
X = ∂y, so that the characteristic Q = η − ξy′ = 1.
On the other hand the symmetry condition is given by

X [λ,(n)](y(n) − w) = 0 on y(n) = w. (5.3.1)

This leads to the linearized symmetry condition:

(A + λ)n(1) =
n−1∑
i=0

(A + λ)i(1)
∂w

∂y(i)
. (5.3.2)
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When n = 2, this condition assumes the form

A[λ] + λ2 = wy + λwy′ (5.3.3)

which is identical to (5.2.10). Therefore we can conclude that in case of second-order ODEs
λ is always given by −S0/S1 where S0 and S1 are the solutions of the coupled system, (5.2.5)
and (5.2.6).

For n = 3 the explicit form of the corresponding equation determining λ is

A2[λ] + 3λA[λ] + λ3 = wy + λwy′ + (A[λ] + λ2)wy′′ . (5.3.4)

When a first integral is not known, one can use (5.3.4) to determine λ.

5.3.1 λ-symmetries and the second-order Painlevé-Gambier equa-
tions

In this subsection we consider a few of the second-order equations of the Painlevé-Gambier
classification and observe certain interesting features of these equations in the context of
λ-symmetries. It is seen that when the equations admit at least a single Lie point symmetry
the corresponding functional form of λ appears to be a rational function of y′ while, when
the equation does not admit a single Lie symmetry generator, the corresponding expression
for λ is found to be polynomial. Let us consider equation XXVII of the Painlevé-Gambier
classification [44], namely

y′′ =
m− 1

m
y′2 +

(
fy + φ− m− 2

my

)
y′ − mf 2

(m + 2)2
y3 +

m(f ′ − fφ)

m + 2
y2 + ψy − φ− 1

my
.

Here f, φ and ψ are definite rational functions of two analytic functions q(y) and r(y) and
of their derivatives. In the particular case of m = 2 with f = −2, φ = 0 and ψ(x) = F (x),
the canonical equation is

y′′ = w(x, y, y′) =
1

2

y′2

y
− 2yy′ − y3

2
+ F (x)y − 1

2y
. (5.3.5)

When we used Maple, we could not find any Lie point symmetries for this equation. The
vector field X = ∂y is a λ-symmetry of (5.3.5) if and only if λ(x, y, y′) is a solution of the
determining equation (5.3.3) so that one has, since A = ∂x + y′∂y + w∂y′ ,

λx+y′λy+
(1

2

y′2

y
−2yy′−y3

2
+F (x)y− 1

2y

)
λy′+λ2 = − y′2

2y2
−2y′−3y2

2
+F (x)+

1

2y2
+λ

(y′

y
−2y

)
.

(5.3.6)
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In order to find some solution of (5.3.6), we assume an ansatz which is linear in y′, viz,
λ = α(x, y)y′ + β(x, y). Then α and β must satisfy the following equations:

αy +
α

2y
+ α2 = − 1

2y2
+

α

y
, (5.3.7)

βy + 2αβ − β

y
+ αx = −2, (5.3.8)

βx − y3

2
α + F (x)yα− α

2y
+ β2 = F (x)− 3

2
y2 +

1

2y2
− 2yβ. (5.3.9)

It is clear that α(x, y) = 1
y

is a particular solution of (5.3.7). With this value of α, equation

(5.3.8) becomes

βy +
β

y
= −2. (5.3.10)

The general solution of (5.3.10) is given by

β(x, y) =
r(x)

y
− y, (5.3.11)

where r(x) is an arbitrary function of x. When we substitute these values of α and β into
(5.3.9), we have

r′(x)

y
+

r2(x)

y2
=

1

y2
, (5.3.12)

which implies r(x) = ±1. Thus there are two λ-symmetries:

λ1 =
y′

y
+

1

y
− y and λ2 =

y′

y
− 1

y
− y. (5.3.13)

Next we calculate a first integral I(x, y, y′) for the given ODE when it admits λi-symmetry
with generator X = ∂y. This is accomplished in essentially two steps with a procedure based
upon the following theorem due to Muriel and Romero [69].

Theorem 5.3.1 (Muriel-Romero) (a) If I(x, y, y′) is a first integral of y′′ = w(x, y, y′),
then the vector field X = ∂y is a λ-symmetry of the equation for λ = −Iy/Iy′ and X [λ,(1)]I =
0.

(b) Conversely, if X = ∂y is a λ-symmetry of this equation for some function λ(x, y, y′),
then there exists a first integral I(x, y, y′) such that X [λ,(1)]I = 0.

Note that in this case we have

X [λ,(1)] = ∂y + λ∂y′ and
[
X [λ,(1)], A

]
= λ ·X [λ,(1)].

As an application of this theorem we note that the latter part of the theorem provides
a procedure for determining the first integral, given that the ODE admits a λ-symmetry.
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Suppose that X = ∂y be a λ− symmetry for some λ(x, y, y′) ∈ C∞(M (1)). Let I(x, y, y′)
denote a nontrivial first integral of y′′ = w(x, y, y′).
Part(b) of the above theorem, implies X [λ,(1)]I(x, y, y′) = Iy + λIy′ = 0, since X [λ,(1)] =
∂y + λ∂y′ . Also h(x, y, y′) = x is another first integral because

X [λ,(1)]h = (∂y + λ∂y′)x = 0.

Therefore any first integral of X [λ,(1)] is necessarily of the form

J(x, y, y′) = G(x, I(x, y, y′)). (5.3.14)

Consequently we must look for a common first integral of the vector fields X [λ,(1)] and A. In
other words one needs to solve the equation

A(J) = Gx + A(I).GI = 0. (5.3.15)

Since here [
X [λ,(1)], A

]
= λ ·X [λ,(1)],

it is easy to see that

X [λ,(1)]I = 0 implies X [λ,(1)]A(I) = 0.

So A(I) functionally depends upon x and the first integral I(x, y, y′), i.e., there exists a
function H(x, I) such that A(I) = H(x, I). This allows us to interpret (5.3.15) as as first-
order PDE, namely

Gx + H(x, I)GI = 0. (5.3.16)

If G(x, I) be its solution, then J = G(x, I(x, y, y′)) satisfies

A(J) = 0. (5.3.17)

We illustrate the procedure with the previous example for which we had two λ-symmetries.
In either case we note that a particular solution of

X [λi,(1)]Ii = Iiy + λiIiy′ = 0 i = 1, 2, (5.3.18)

may be taken in the form

I1 =
y′

y
+

1

y
+ y, (5.3.19)

I2 =
y′

y
− 1

y
+ y. (5.3.20)

Next we calculate A(Ii). This gives

A(I1) = H1(x, I1) := F (x) + 1− 1

2
I2
1 , (5.3.21)

A(I2) = H2(x, I2) := F (x)− 1− 1

2
I2
2 . (5.3.22)
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Consequently the first integral for the example (5.3.5) is of the form Ji = Gi(x, Ii) with Gi

being a solution of the PDE,

Gix + (F (x)± 1− 1

2
I2
i )GiIi

= 0, i = 1, 2. (5.3.23)

Here the upper(lower) sign corresponds to i = 1(2) respectively. We consider the case of
i = 1. The Lagrange characteristic is given by

dx

1
=

dI1

F (x) + 1− I2
1

2

,

and implies the following Riccati differential equation

dI1

dx
+

I2
1

2
= F (x) + 1. (5.3.24)

Let W1 be a particular integral of this equation and write

I1 =
1

u1

+ W1. (5.3.25)

Substitution of this into (5.3.24) gives the equation

1

u2
1

(
−du1

dx
+

1

2
+ u1W1

)
+

(
dW1

dx
+

1

2
W 2

1

)
= F (x) + 1.

Because W1 is a particular integral, it follows that

du1

dx
− u1W1 =

1

2
. (5.3.26)

As this is a first-order equation, its integrating factor is, g(x) = e−
∫

W1dx, and its solution
can be obtained by two quadratures in the form

u1 = J1s0(x) + s1(x), (5.3.27)

where

s0(x) =
1

g(x)
= e

∫
W1dx, s1(x) =

1

2g(x)

∫
g(x)dx, (5.3.28)

and J1 is a constant. Hence from (5.3.25) we have

J1 =
g(x)

I1 −W1

− 1

2

∫
g(x)dx, (5.3.29)

with g(x) and W1 being the solutions of

g′(x) + W1g(x) = 0, (5.3.30)

dW1

dx
+

1

2
W 2

1 = F (x) + 1, (5.3.31)
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respectively. Thus corresponding to i = 1 the original ODE (5.3.5) admits the first integral,

J1 =
g(x)

y′
y

+ 1
y

+ y −W1

− 1

2

∫
g(x)dx. (5.3.32)

In a similar manner corresponding to i = 2 one has another independent first integral of
(5.3.5) given by

J2 =
h(x)

y′
y
− 1

y
+ y −W2

− 1

2

∫
h(x)dx, (5.3.33)

where

h′(x) + W2h(x) = 0, (5.3.34)

dW2

dx
+

1

2
W 2

2 = F (x)− 1. (5.3.35)

Equations with one Lie point symmetry

In the case of ODEs possessing one Lie point symmetry we observe that the calculation of
λ-symmetries follows a certain pattern and that the first integrals are comparatively easier
to evaluate. We summarize our findings in the Table below.

Table-I Representative list of ODEs from the Painlevé-Gambier classification and their
λ-symmetries, integrating factors and first integrals.

Painlevé-Gambier ODE λ-symmetry Integrating factor First integral

III. y′′ = 6y2 + 1
2

6y2

y′ + 1
2y′ 2y′ y′2 − 4y3 − y

VIII. y′′ = 2y3 + βy + γ 2y3+βy+γ
y′ y′ 1

2y′2 − (y4

2 + β y2

2 + γy)

XIX. y′′ = y′2
2y + 4y2 + 2y y′

2y + 4y2+2y
y′

y′
y

y′2
2y − 2y2 − 2y

XXX. y′′ = y′2
2y + 3y3

2 + y′
2y +

3 y3

2
+4αy2+2βy− γ2

2y

y′
y′
y

y′2
2y − y3

2 − 2αy2 − 2βy − γ2

2y

+4αy2 + 2βy − γ2

2y

One notices that in each case, if the ODE is written as y′′ = w(x, y, y′), then the
corresponding λ-symmetry is given by λ(x, y, y′) = w/y′. Furthermore the first integrals of
the vector field A associated with the ODE and the vector field X [λ,(1)] are identical. This
is actually a consequence of the fact that all the equations from the Painlevé-Gambier
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classification in Table I admit ∂x as the Lie point symmetry so that the characteristic
Q := η − ξy′ = −y′. Consequently it may be proved that X = ∂y is a λ-symmetry for

λ(y, y′) =
A(Q)

Q
=

A(y′)
y′

=
w(y, y′)

y′
.

In fact such equations then always admit a first integral, which does not depend upon the
independent variable x, i.e., I(x, y, y′) = I(y, y′), and which is also a first integral of X [λ,(1)].
A similar feature is also encountered in the case of third-order equations below.

5.3.2 λ-symmetries for some third-order ODEs

In this section we describe the λ-symmetries of certain third-order ODES. One recalls that
to determine the λ-symmetries of any third-order ODE, one has to solve the equation
(5.3.4). This is in general a nontrivial exercise and one customarily employs an ansatz for
λ. We illustrate this with the following example.

Example 5.3.1

y′′′ + 3
y
y′y′′ − 3y′′ − 3

y
y′2 + 2y′ = 0

Here w = −( 3
y
y′y′′ − 3y′′ − 3

y
y′2 + 2y′). We assume that λ = a(x, y, y′)y′′ + b(x, y, y′).

Insertion of the above expression for λ into the lhs of (5.3.4) reveals that it is a cubic
expression in y′′, with the coefficient of y′′3 given by a3 + 3aay′ + ay′y′ . On the other hand
the rhs of (5.3.4) turns out to be quadratic in y′′ so that we have

a3 + 3aay′ + ay′y′ = 0. (5.3.36)

A particular solution of this equation is obviously given by

a(x, y, y′) =
1

y′
.

With a being thus determined, upon equating the coefficients of y′′2 in (5.3.4) we find that

by′y′ + 3
by′

y′
= 0. (5.3.37)

This admits the following solution

b(x, y, y′) =
ξ(x, y)

y′2
+ η(x, y).

However, equation of the coefficients of the next lower power, i.e., y′′, reveals that
ξ(x, y) = 0 so that b(x, y, y′) = η(x, y). Finally from the coefficient of the term independent
of y′′ we find η to be a solution of the following equation

A(η) + η(η + 1) = ηx + y′ηy + η(η + 1) = 0. (5.3.38)
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Clearly η must be independent of y so that finally

λ(x, y, y′, y′′) =
y′′

y′
+ η(x),

where η(x) is the solution of the equation

ηx + η(η + 1) = 0.

It is obvious that particular solutions of this are given by η = 0,−1, respectively, so that
the given equation admits two λ symmetries:

λ1 =
y′′

y′
,

λ2 =
y′′

y′
− 1.

It was shown in [8] that this equation admits a first integral of the form

I(x, y, y′, y′′) = (y′2 + yy′′ − yy′)e−2x.

This first integral actually corresponds to the choice λ = λ2 as we illustrate below. Note
that, if a first integral is known, then the problem of finding the λ-symmetries reduces to a
determination of the solutions of the PDE

(A(λ) + λ2)Iy′′ + λIy′ + Iy = 0, (5.3.39)

where the vector field is given by A = ∂x + y′∂y + y′′∂y′ + w∂y′′ If we assume a linear ansatz
in y′′ for λ of the form λ = a(x, y, y′)y′′ + b(x, y, y′), we find after substituting this into
(5.3.39) and equating the coefficients of the different powers of y′′ that

ay′ + a2 = 0, (5.3.40)

(ax + y′ay) + 3a(1− y′

y
) + by′ + 2ab +

a

y
(2y′ − y) +

1

y
= 0, (5.3.41)

a(
3y′2

y
− 2y′) + (bx + y′by) + b2 + b(

2y′ − y

y
)− y′

y
= 0. (5.3.42)

Clearly from the first equation of the above set we have a = 1
y′+c(x,y)

. Substitution of this

into the remaining equations and equation of the different powers of y′ leads to the
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following set of equations:

by′ = 0, (5.3.43)

cy − (2 +
c

y
+ 2b) = 0, (5.3.44)

cx − c(2 +
c

y
+ 2b) = 0, (5.3.45)

by +
2

y
b +

2

y
= 0, (5.3.46)

−2 + bx + cby + (b2 − b) +
c

y
(2b− 1) = 0, (5.3.47)

cbx + c(b2 − b) = 0. (5.3.48)

One may easily check that b = −1 and c = 0 satisfy the above equations and hence

λ =
y′′

y′
− 1.

On the other hand for λ1 = y′′/y′ it may be verified that a particular solution of

X [λ,(2)]I := Iy + λ1Iy′ + (A(λ1) + λ2
1)Iy′′ = 0 (5.3.49)

is given by
I(y, y′, y′′) = yy′′ + y2 − 3yy′ + y′2. (5.3.50)

Furthermore one may easily check that it is also a first integral of the vector field
A = ∂x + y′∂y + y′′∂y′ + w∂y′′ associated with the ODE, i.e., A(I) = 0. In other words a
solution I(y, y′, y′′) of (5.3.49) is itself a first integral of the ODE under consideration. This
is a consequence of the fact that the ODE admits a translational symmetry, i.e., ∂x is a Lie
point symmetry and A(λ1) + λ2

1 = w/y′. Next we present an example from [27] in which
use was made of the generalised Sundman transformation to linearize a third-order
differential equation [28].

Example 5.3.2

y′′′ =
(

y′y′′
y

+ 3
2

y′3
y2

)

This equation admits a similar feature to the previous example because upon solving (3.4)
with the ansatz λ = a(x, y, y′)y′′ + b(x, y, y′) one finds that λ = y′′/y′. To find the first
integral we solve (3.39) to get the following particular solutions:

I1 =
y′′

y2
+

y′2

2y3
, (5.3.51)

I2 = y2y′′ − 3

2
yy′2. (5.3.52)
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In either case it is observed that A(Ik) = 0, k = 1, 2, so that these are also first integrals
of the original ODE. Our final example in this section is taken from [8] and exhibits an
interesting feature similar in some respect with the previous result for a second-order ODE.

Example 5.3.3

y′′′ =
(

y′′
2

y′ + y′y′′
y

)
.

Here on the assumption that λ is linear in y′′, i.e., λ = a(x, y, y′)y′′ + b(x, y, y′), one finds
after a tedious but straightforward calculation that λ = y′′/y′.
For a third-order equation the PDEs of the system given by (5.2.3) are

−A[S2] = wy′′S2 + S1,

−A[S1] = wy′S2 + S0,

−A[S0] = wyS2.

Here S2 plays the role of the integrating factor since S2 = Iy′′ . If one knows the integrating
factor S2, then defining λ = −S1/S2 we find that

λ =

(
A[S2]

S2

+ wy′′

)
. (5.3.53)

The integrating factor S2 can be found from the adjoint symmetry equation following the
elimination of S1 and S0 from the above set of PDEs. Indeed for the present example one
finds that S2 = 1/(yy′) and it follows once again from (5.3.53) that λ = y′′/y′. However, we
wish to point out that, unlike the case of second-order ODEs, this formula for λ is not true
in general.

In this chapter we have introduced the notion of λ-symmetries which may be considered as
a sort of generalisation of the Lie point symmetries and have used them to derive first
integrals of second and third-order equations.

In the following chapter we shall pursue further generalisations of the notion of the
symmetries of ODEs by considering nonlocal transformations which are also known as
Sundman transformations.



Chapter 6

Generalized Sundman transformation
and Symmetry

6.1 Introduction

In this chapter we introduce the notion of a generalized Sundman transformation and
employ it to obtain certain first integrals of autonomous second-order ordinary differential
equations belonging to the Painlevé-Gambier classification [84, 85] and the list of
Painlevé-Gambier equation contained in [44]. In particular, this method yields
systematically both known and unknown first integrals of a large number of the
Painlevé-Gambier equations.
We begin by considering an nth-order ordinary differential equation of the form

x(n) = w(t, x, ẋ, ẍ, . . . , x(n−1)) (6.1.1)

where x = x(t) and x(k) = dkx/dtk, Formally we define a generalized Sundman
transformation for (6.1.1) as follows.

Definition 6.1.1 (Sundman transformation) A coordinate transformation of the form

X(T ) = F (t, x), dT = G(t, x)dt,
∂F

∂x
6= 0, G 6= 0 (6.1.2)

is said to be a generalized Sundman transformation of equation (6.1.1) if differentiable
functions F and G are determined such that (6.1.1) is transformed to the autonomous
equation

X(n) = w0(X, X ′, . . . , X(n−1)), (6.1.3)

where X ′ = dX/dT etc.

This notion of the generalized Sundman transformation, as a kind of nonlocal extension of
invertible point transformation was made by Duarte et al. Its nonlocal character is
apparent from the fact that T =

∫
G(t, x(t)) dt. If (6.1.3) happens to be a linear ODE,

113
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then we say that the original ODE, (6.1.1), is linearizable. In the event w0 = 0 we say that
(6.1.1) has been mapped to the free particle equation.
Closely related to the concept of a generalized Sundman transformation is the notion of an
associated Sundman symmetry. This is similar in spirit to the existence of a Lie symmetry
under point transformations.
Suppose we have a generalized Sundman transformation (GST)

X(T ) = F (t̃, x̃), dT = G(t̃, x̃)dt̃

which maps the equation

x̃(n) = w(t̃, x̃, ˙̃x, . . . , x̃(n−1)) 7−→ X(n) = w0(X,X ′, . . . X(n−1)).

If there exists a transformation of the differentiable functions F (t̃, x̃) and G(t̃, x̃),
considered as functions of F (t, x) and G(t, x), such that our original differential equation
(6.1.1) remains invariant under the transformation, then the transformation defines a
Sundman symmetry. Formally it is defined as follows.

Definition 6.1.2 (Sundman symmetry) A Sundman symmetry for equation (6.1.1) is
a transformation of the form

F (t̃, x̃) = M(F (t, x), G(x, t)), G(t̃, x̃)dt̃ = N(F (t, x), G(t, x))dt, (6.1.4)

where M and N are some differentiable functions such that the transformation keeps
(6.1.1) invariant. In other words (6.1.1) is transformed to

x̃(n) = w(t; x̃, ˙̃x, ¨̃x, . . . , x̃(n−1)). (6.1.5)

If M(F, G) = F and N(F, G) = G, then of course, the symmetry is trivial. The set of
conditions on the differentiable functions F and G when the differential equation (6.1.1) is
mapped to the autonomous differential equation (6.1.3) are referred to as the Sundman
determining equations.

A Sundman symmetry (6.1.4) is obtained by choosing M and N in such a way that the
Sundman determining equations remain invariant. If

X = F (t̃, x̃), dT = G(t̃, x̃)dt̃

transforms (6.1.5) to (6.1.3) and

X = M(F (t, x), G(t, x)), dT = N(F (t, x), G(t, x))dt

also transforms (6.1.1) to (6.1.3), then the composition of these two GSTs leads to the
Sundman symmetry (6.1.4) of (6.1.1).
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6.2 GST for the Jacobi equation

We begin this section by considering the well-known Jacobi equation. The reason for this is
that many of the second-order equations of the Painlevé-Gambier classification may then
be regarded as special cases of this rather general equation, as we illustrate below.

The Jacobi equation [46, 79]

ẍ +
1

2
φxẋ

2 + φtẋ + B(t, x) = 0, (6.2.1)

may be transformed to X ′′ = 0 by the transformation (6.1.4) provided the coefficients
involved in the transformation satisfy the Sundman determining equations, which are given
by the following relations:

1

2
φx(F,G; t, x) =

Fxx

Fx

− Gx

G
, (6.2.2)

φt(F, G; t, x) =
2Fxt

Fx

− Ft

Fx

Gx

G
− Gt

G
, (6.2.3)

B(F,G; t, x) =
Ftt

Fx

− Gt

G

Ft

Fx

. (6.2.4)

Further it admits a Sundman symmetry of the form (6.1.4) if and only if M and N are
given by

M(F, G) = M(F (t, x)) and N(F,G) = G(t, x)ψ(F ). (6.2.5)

The Sundman symmetry of (6.2.1) is of the form

F (x̃, t̃) = M(F (x, t)), (6.2.6)

G(t̃, x̃) = G(t, x)
dM(F (t, x))

dF
dt, (6.2.7)

with no further condition on the differentiable function M . This follows from the following
observation. Suppose for the sake of notational convenience we denote

F (t̃, x̃) = F̂ and G(t̃, x̃) = Ĝ.

The invariance of the Sundman determining equations requires each expression occurring in
(6.2.2)-(6.2.4) to be invariant. From (6.2.4) we observe, making use of (6.2.5), that

F̂tt

F̂x

− Ĝt

Ĝ

F̂t

F̂x

=
Ftt

Fx

− Gt

G

Ft

Fx

+

(
M ′′(F )

M ′(F )
− ψ′(F )

ψ(F )

)
F 2

t

Fx

.

The left hand side is clearly an invariant provided

(
M ′′(F )

M ′(F )
− ψ′(F )

ψ(F )

)
= 0 (6.2.8)
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which in turn implies

ψ(F ) =
dM

dF
, (6.2.9)

where we have chosen the constant of integration to be unity. It may be verified that
(6.2.2) and (6.2.3) are also invariant under (6.2.5) provided condition (6.2.9) holds, i.e.,

F̂xx

F̂x

− Ĝx

Ĝ
=

Fxx

Fx

− Gx

G

2F̂xt

F̂x

− F̂t

F̂x

Ĝx

Ĝ
− Ĝt

Ĝ
=

2Fxt

Fx

− Ft

Fx

Gx

G
− Gt

G
.

Case I: When φt = 0 and B(x, t) = 0 we are lead to the following special case of the Jacobi
equation

ẍ +
1

2
φxẋ

2 = 0.

The determination of the functions F and G will now be explained.

Step I: This involves finding G in term of F
Since B(t, x) = 0, from (6.2.4) we can set

G = a(x)Ft, (6.2.10)

where a is an arbitrary function of x.
Step II: We express F and its derivatives in terms of the coefficient a(x)
Since φt=0, from (6.2.3) and (6.2.10) we have

Fxt

Fx

− ax(x)

a(x)

Ft

Fx

− Ftt

Ft

= 0,

i.e.,
∂

∂t

(Fx

Ft

)
=

ax(x)

a(x)
.

Integrating this with respect to t we find

Fx

Ft

=
ax

a
t + b(x), (6.2.11)

where b is an arbitrary function of x. Finally from (6.2.2) we get

Fx

G
= c(t)e

φ
2 = c(t)K(x), (6.2.12)

where c is an arbitrary function of t and

eφ/2 = K(x). (6.2.13)
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Since φt = 0, the r.h.s. is independent of t.
Step III: Determination the of coefficients
Using (6.2.10) and (6.2.11) one can show that (6.2.12) can be reduced to

ax

a2
t +

b(x)

a
= c(t)K(x). (6.2.14)

There are two possibilities (a) c(t) = c0 (constant), in this case a is also constant; (b)
c(t) = t. The latter case is more interesting. Equating the coefficient of t from (6.2.14) we
get

ax

a2
= K(x), (6.2.15)

which implies

a(x) = − 1

K1(x) + f
(6.2.16)

where

K1(x) =

∫
K(x)dx (6.2.17)

and f is an arbitrary constant. Assuming f = 0 one finds

a(x) = − 1

K1(x)
. (6.2.18)

Step IV: Finding F and G
Using (6.2.18) in (6.2.11) and with b(x) = 0 we find that

Fx

Ft

= − K(x)

K1(x)
t. (6.2.19)

Using the method of characteristics the general solution of F (t, x) can be expressed in the
form

F (t, x) = J

(
K1(x)

t

)
, (6.2.20)

where J(λ) is any arbitrary function of the characteristic coordinate λ = K1(x)/t. Hence
from (6.2.10) using (6.2.18) with F given by (6.2.20), we easily find that

G(t, x) =
1

t2
J ′(λ). (6.2.21)

It is interesting to note that, when J(λ) = λ, the nonlocal character of the transformation
vanishes for we have

X = F (t, x) =
K1(x)

t
and G(t, x) =

1

t2
so that dT =

1

t2
dt leading to T = −1

t
. (6.2.22)
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Step V: Finding first integrals from F and G
As the standard first integrals of the linear ODE, X ′′ = 0, are given by

I1 = X ′ =
dX

dT
and I2 = X − TX ′

respectively, as a result of the GST they make the following forms:

I1 =
Fx

G
ẋ +

Ft

G
= tK(x)ẋ−K1(x) (6.2.23)

and

I2 = X − TX ′ = F (t, x)− (tK(x)ẋ−K1(x))

∫
G(t, x)dt. (6.2.24)

In particular, when F and G are given by (6.2.22), I2 assumes the following simple form

I2 = ẋK(x). (6.2.25)

It is important to note that in the following examples we repeatedly use this expression in
order to compare the results of our calculations with the known time-independent first
integrals given in Ince’s book [44].
Secondly, in view of the fact that we have at our disposal two first integrals, it is a
straightforward matter to obtain the general solution by eliminating ẋ from these
expression.

6.2.1 Examples from the Painlevé-Gambier class of equations

Apart from the six Painlevé equations, the remaining 44 second-order ODEs of the
Painlevé-Gambier classification scheme possess solutions that can be expressed in terms of
elementary functions. These solutions fall into two classes – (a) solutions which are
rational in the independent variable and (b) solutions which are expressed in terms of the
classical special functions. Since the latter are the solutions of linear equations, the second
class of solutions is referred to as the ‘linearizable’ case, obviously these exist only for
special values of the parameters.

In this subsection we focus on equations which do not belong to the six Painlevé
transcendents. It may be recalled that Painlevé, Gambier and their pupils found fifty
second-order ODEs of canonical form, the solutions of which do not have any movable
critical singularities, i.e., they possess the Painlevé property. Using the generalized
Sundman transformations we have obtained certain new first integrals for the equations XI,
XVII, XXXVII, XXXXI and XXXXIII of the Painlevé-Gambier classification, as given in
Ince’s classic text [44]. The results are presented below.



6.2 GST for the Jacobi equation 119

Example 6.2.1 (Painlevé-Gambier equation XI)

The first system we examine is equation number XI of the Painlevé-Gambier classification:

ẍ− 1

x
ẋ2 = 0 (6.2.26)

Comparison with the Jacobi equation (6.2.1) reveals that

1

2
φx = −1

x
. (6.2.27)

Hence from (6.2.13) we have

K(x) = e
φ
2 =

1

x
(6.2.28)

and from (6.2.17)
K1(x) = ln x (6.2.29)

Therefore making use of (6.2.22) we find that

F =
( ln x

t

)2

and G(t, x) =
2 ln x

t3
(6.2.30)

while from (6.2.23) and (6.2.24) the first integrals for this equation are

I1 =
t

x
ẋ− ln x (6.2.31)

and

I2 =
ẋ

x
. (6.2.32)

Notice that whereas the time independent first integral I2 is mentioned in [44] the
remaining first integral I1 is time dependent and is not stated therein. This is a trivial
example in the sense that one could have deduced these results even otherwise. Moreover
G(t, x) being a function of t only actually produces a point transformation. But the
Sundman symmetry of this simple example is quite interesting.

The Sundman symmetry

To deduce the Sundman symmetry for this equation, it is convenient to assume that,
J(λ) = λ2 for the rest of this subsection so that from (6.2.20) we have

F (t, x) =

(
K1(x)

t

)2

=

(
ln x

t

)2

. (6.2.33)

Since the Sundman symmetry of (6.2.26) is of the form (6.2.6), we assume that

F̂ = F (t̃, x̃) = M(F (t, x)).
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Consequently with F given as in (6.2.33) one finds that

x̃ = exp
(
t̃
√

M(F )
)

. (6.2.34)

On the other hand from (6.2.7), using (6.2.21) to calculate G which now is given by
G(t, x) = 2 ln x/t3, we have

Ĝdt̃ = G
dM(F )

dF
dt ⇒ ln x̃

t̃3
dt̃ =

ln x

t3
dM

dF
dt.

Upon using (6.2.34) to eliminate x̃ from the l.h.s of the above expression, we obtain the
following transformation for the time variable:

t̃ = −
[
c +

∫
ln x

t3
√

M(F )

dM(F )

dF
dt

]−1

. (6.2.35)

Here c is a constant of integration. Substituting this expression into (6.2.34) we get the
transformation for the spatial variable, viz

x̃ = exp


−

√
M(F )

c +
∫

ln x

t3
√

M(F )

dM(F )
dF

dt


 . (6.2.36)

Here M(F ) is an arbitrary function of F and c is a constant of integration. Equations
(6.2.35) and (6.2.36) constitute a Sundman symmetry for the Painlevé-Gambier XI
equation.
The above procedure for finding Sundman symmetries may easily be applied to some of the
other equations of the Painlevé-Gambier classification. The results for this and some of the
other equations of the Painlevé-Gambier classification are summarized in the following
Table-1
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Table-1
Summary of results of Sundman transformations and symmetries

Painlevé-Gambier Equation No. Sundman Transformation Sundman Symmetry

XI. ẍ− 1
x
ẋ2 = 0 F (x, t) =

(
log x

t

)2
t̃ = −

[
c +

∫ log x

t3
√

M(F )
dM(F )

dF
dt

]−1

G(x, t) = 2 ln x
t3

x̃ = exp


−

√
M(F )

c+
∫ log x

t3
√

M(F )
dM(F )

dF
dt




XVII. ẍ− m−1
mx

ẋ2 = 0 F (x, t) =
(

mx1/m

t

)2

t̃ = c−
[
m

∫ x1/m

t3
√

M
dM
dF

dt

]−1

G(x, t) = 2mx1/m

t3
x̃ =

(
t̃
√

M(F )
m

)m

XXXVII. ẍ−
{

1
2x

+ 1
x−1

}
ẋ2 = 0 F (x, t) =

(
1
t
log x1/2−1

x1/2+1

)2

t̃ = c−
[∫

log

(
x1/2−1
x1/2+1

)
1√
M

dM
dF

dt

]−1

G(x, t) = 2
t3

log x1/2−1
x1/2+1

x̃ =

(
1+et̃

√
M(F )

1−et̃
√

M(F )

)2

XLI. ẍ− 2
3

{
1
x

+ 1
x−1

}
ẋ2 = 0 F (x, t) =

K2
1 (x)

t2

G(x, t) = 2K1(x)
t3

K1(x) = −3(−x)1/3
2F1(1/3, 2/3; 4/3; x)

XLIII. ẍ− 3
4

{
1
x

+ 1
x−1

}
ẋ2 = 0 F (x, t) =

K2
1 (x)

t2

G(x, t) = 2K1(x)
t3

K1(x) = −4(−x)1/4
2F1(3/4, 1/4; 5/4; x)

In the above table 2F1(a, b, c; x) is the hypergeometric series which converges for
−1 < x < 1. For Equations XLI and XLIII it is difficult to obtain explicit expressions for
the corresponding symmetries and we do not display them here.

In Table 2 we summarize the results for the time-independent and time-dependent first
integrals of the above equations.
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Table-2
Summary of First Integrals

Painlevé-Gambier Equation Time-dependent F.I Time-independent F.I

XVII. ẍ− m−1
mx

ẋ2 = 0 tx
1−m

m ẋ−mx
1
m x

1−m
m ẋ

XXXVII. ẍ−
(

1
2x

+ 1
x−1

)
ẋ2 = 0 t

x1/2(x−1)
ẋ− log x1/2−1

x1/2+1
− 1

x1/2(x−1)
ẋ

XLI. ẍ− 2
3

(
1
x

+ 1
x−1

)
ẋ2 = 0 tẋ

x
2
3 (x−1)

2
3

+ 3(−x)1/3
2F1(1/3, 2/3; 4/3; x)

ẋ
x2/3(x−1)2/3

XLIII. ẍ− 3
4

(
1
x

+ 1
x−1

)
ẋ2 = 0 tẋ

x
3
4 (x−1)

3
4

+ 4(−x)1/4
2F1(3/4, 1/4; 5/4; x)

ẋ
x3/4(x−1)3/4

Case B: When φt = 0 = Bt

The prototype equation for this case has the generic form

ẍ +
1

2
φxẋ

2 + B(x) = 0. (6.2.37)

Once again there are a number of equations of the Painlevé-Gambier classification which
belong to this category.

6.3 Generalized Sundman Transformation of ODE for

the mapping to X ′′ + a0(X) = 0

In this case we attempt to construct a generalized Sundman transformation (6.1.2) (GST)
such that (6.2.37) is mapped to the following equation

X ′′ + a0(X) = 0, (6.3.1)

where X ′ = dX/dT . The exact form of a0(X) will be specified below. This is possible
provided the following conditions hold good (i.e. the Sundman determining equations) for
the coefficients of (6.2.37).

1

2
φx =

Fxx

Fx

− Gx

G
(6.3.2)

0 = 2
Fxt

Fx

− Gx

G

Ft

Fx

− Gt

G
(6.3.3)

B(x) =
Ftt

Fx

− Gt

G

Ft

Fx

+ a0(F )
G2

Fx

. (6.3.4)
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From (6.3.2) we have

ln Fx − ln G =

∫
1

2
φxdx− ln b(t).

Here b(t) is an arbitrary constant of integration. It follows that

G(t, x) = b(t)e−φ/2Fx. (6.3.5)

Substituting G from (6.3.5) to (6.3.4) we have

Ftt

Fx

− FxtFt

F 2
x

−
˙b(t)

b(t)

Ft

Fx

+ a0(F )b(t)2e−φFx = B(x). (6.3.6)

If we set b(t) = β, i.e., a constant independent of t and assume

∂

∂t

( Ft

Fx

)
= 0, (6.3.7)

then (6.3.6) implies

a0(F )β2e−φFx = B(x). (6.3.8)

Instead of trying to determine the form of F first, it is more convenient to stipulate a0(F )
and see whether we can satisfy the remaining equations with such a choice of a0(F ). To
this end we suppose

a0(F ) = ±F. (6.3.9)

Then (6.3.8) yields

F 2 = ± 2

β2

∫
B(x)eφdx. (6.3.10)

Thus F is a function of x only and as a result it is obvious that (6.3.7) is trivially satisfied.
It remains to verify whether such an expression for F is consistent with (6.3.3). Since
b(t) = β is a constant, we have from (6.3.5),

G(t, x) = βe−φ/2Fx =
B(x)eφ/2

(±2
∫

B(x)eφdx
)1/2

, (6.3.11)

which is clearly independent of t and hence Gt = 0. Consequently, since F and G are only
functions of x, it follows that (6.3.3) is clearly satisfied. In summary we therefore have the
following form of the GST mapping (6.2.37) to the equation X ′′ ±X = 0, viz

X = F (x) =

(
± 2

β2

∫
B(x)eφ(x)dx

)1/2

, dT =
B(x)eφ/2

(±2
∫

B(x)eφdx
)1/2

dt. (6.3.12)

The latter is obviously a nonlocal transformation.
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The Sundman symmetry

The Sundman symmetry associated with (6.2.37) is not difficult to deduce. As above, for
notational convenience we denote

F̂ = F (t̃, x̃) and Ĝ = G(t̃, x̃).

To ensure invariance of the Sundman determining equations, namely (6.3.2)-(6.3.4), we
assume

F̂ = M(F ) and Ĝ = G(t, x)ψ(F ). (6.3.13)

The functional forms of M and ψ are determined by demanding invariance of the Sundman
determining equations. Invariance of (6.3.2) leads to

ψ(F ) = K
dM(F )

dF
,

where K is a constant of integration, which may be set to unity, so that

ψ(F ) = M ′(F ). (6.3.14)

Invariance of (6.3.4) then leads to the equation

dM

dF
=

a0(F )

a0(M)

whence it follows, with a0(F ) = ±F , that

M = ±
√

F 2 + c, (6.3.15)

where c is a constant of integration. Note that, if c = 0, then we get a trivial symmetry.
The functional form of ψ is therefore given by

ψ(F ) = ± F√
F 2 + c

. (6.3.16)

With M and ψ given by (6.3.15) and (6.3.16) respectively, one can easily verify that the
final Sundman determining equation, namely (6.3.3), is identically satisfied. Thus in
summary we have the following Sundman symmetry for (6.2.37)

F (t̃, x̃) = ±
√

F 2(t, x) + c and G(t̃, x̃)dt̃ = ±G(t, x)
F√

F 2 + c
dt. (6.3.17)

In the following we consider only the case in which the GST maps equations of the
Painlevé-Gambier classification belonging to the class of (6.2.37) to a harmonic oscillator
equation

X ′′ + X = 0. (6.3.18)

Note that a first integral for (6.3.18) is obviously

X ′2 + X2 = I1. (6.3.19)
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Example 6.3.1 (Painlevé-Gambier equation XXI)

ẍ− 3

4x
ẋ2 − 3x2 = 0. (6.3.20)

Here 1
2
φx = − 3

4x
implying φ = ln x−3/2 and B(x) = −3x2. As a result from (6.3.12) taking

the positive square root we find F (x) = 2i
β
x

3
4 and it turns out that G = 3i

2

√
x. Hence the

Sundman transformation has the explicit form

X = F (x) =
2i

β
x

3
4 , dT =

3i

2

√
x dt. (6.3.21)

When the first integral (6.3.19) is evaluated in terms of the preceding transformation, it
reproduces the result in [44].
Table 3 contains a summary of the Sundman symmetry for some of the Painléve-Gambier
equations falling under Case-B

Table-3
Summary of Sundman Symmetry

Painlevé-Gambier Equation Sundman Symmetry

x̃ = 1
2i

√
cβ2 − 4x2

XVIII. ẍ− 1
2x

ẋ2 − 4x2 = 0 t̃ = A +
∫ (2ix)3/2

(cβ2−4x2)3/4 dt

x̃ = ( 1
2i

)4/3(cβ2 − 4x3/2)2/3

XXI. ẍ− 3
4x

ẋ2 − 3x2 = 0 t̃ = A +
∫ (2i)5/3x5/4

(cβ2−4x3/2)5/6 dt

x̃ = 16
(cβ2−4x−1/2)2

XXII. ẍ− 3
4x

ẋ2 + 1 = 0 t̃ = A +
∫

8ix−3/4

(cβ2−4x−1/2)3/2 dt

x̃ =
−1+

√
4x2+4x+1−cβ2

2

XIX. ẍ− 1
2x

ẋ2 − (4x2 + 2x) = 0 t̃ = A +
∫ √

2x(2x+1)√
4x2+4x+1−cβ2

√√
4x2+4x+1−cβ2−1

dt
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6.4 Parametric Solutions

As remarked earlier, when we have two first integrals for a second order ODE, then its
general solution may be obtained simply by eliminating the first derivatives from the two
first integrals. However, the problem of finding a sufficient number of first integrals is itself
a non trivial exercise. In most instances, one is lucky if there exists even a single first
integral. In such cases a parametric solution of the ODE can often be constructed by
integrating the first integral in terms of a parameter. using the technique first developed by
euler et. al. [27, 28] we shall now present parametric solutions of some Painléve-Gambier
equations.
To explain the procedure let us consider a first-order equation of the form

F

(
x(t),

dx

dt

)
= 0. (6.4.1)

Let x(t) = f(τ), dx
dt

= g(τ) and τ = τ(t) where f and g satisfy the relation
F (f(τ), g(τ)) = 0 with τ being a parameter. Since

dx

dt
=

df

dτ

dτ

dt

so

g(τ) =
df

dτ

dτ

dt

, i.e., ∫
dt =

∫
df

dτ

1

g(τ)
dτ + C, (6.4.2)

where C is an integrating constant. The general solution (parametric) of (6.4.1) is then
given by

x(τ) = f(τ), (6.4.3)

t(τ) =

∫
df

dτ

1

g(τ)
dτ + C, (6.4.4)

F (f(τ), g(τ)) = 0. (6.4.5)

Using this method we can integrate (6.3.19) with respect to the parameter τ to obtain the
general solution of (6.3.18) in the form

X(τ) =
√

I1 − τ 2 (6.4.6)

T (τ) = C1 − arcsin

(
τ√
I1

)
, (6.4.7)

with I1 and C1 being the arbitrary constants of integration.
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The general solution of (6.3.20) is then obtained by using the transformation (6.3.21)
together with the parametric solutions (6.4.6) and (6.4.7) and is given by

x(τ) =
( β

2i

)4/3

(I1 − τ 2)2/3, (6.4.8)

t(τ) = − 4

3β

( β

2i

)1/3
∫

dτ

(I1 − τ 2)5/6
+ C2. (6.4.9)

where I1 and C2 are arbitrary constants.
In the Table 4 we present the parametric solutions for some of the other equations of the
Painlevé-Gambier classification scheme, obtained by using the above method.

Table-4
Summary of parametric solutions

Painlevé-Gambier Eqn. Sundman Transformation Parametric solution

F (x, t) = 2i
β

(x2 + x)1/2 x(τ) = 1
2 (−1 +

√
β2τ2 + 1− β2I1)

XIX. ẍ− 1
2x

ẋ2 − (4x2 + 2x) = 0 dT =
βx1/2(2x+1)

2
√

x2+x
dt t(τ) = β√

2

∫ dτ

((β2τ2+1−β2I1)
√

β2τ2+1−β2I1−1)1/2
+ C2

F (x, t) = 2i
β
x x(τ) = β

2i

√
I1 − τ 2

XVIII. ẍ− 1
2x

ẋ2 − 4x2 = 0 dT = 2i
√

xdt t(τ) = − 1√
2iβ

∫
dτ

(I1−τ2)3/4
+ C2

F (x, t) = 2i
β
x−1/4 x(τ) = 16

β4
1√

I1−τ2

XXII. ẍ− 3
4x

ẋ2 + 1 = 0 dT = − i
2
x−1/2dt t(τ) = c2 + 8i

β

∫
dτ

(I1−τ2)3/2

In this chapter we introduce the concept of nonlocal transformations defined by means of
the generalized Sundman transformation. We have also introduced the notion of Sundman
symmetries which may be viewed as the counterpart of the Lie symmetries in the context of
such nonlocal transformations. Furthermore we have derived certain parametric solutions
for some of the Painlevé-Gambier equations by exploiting the Sundman transformation.

In the next chapter we will further generalize the nonlocal character of these
transformations assuming that the transformation (x, t) → (X, T ) is nonlocal in both the
variables.
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Chapter 7

First integral for time-dependent
higher-order Riccati equation by
nonholonomic or a nonlocal
transformation

7.1 Introduction

The time-independent second-order Riccati equation (SORE), also sometimes known as the
Painlevé-Ince equation, plays an important role in dynamical systems. This equation was
studied from a geometric perspective in [5] and shown to admit two alternative Lagrangian
formulations, with both Lagrangians belonging to a nonnatural class. The Lie point
symmetries of the SORE are known to have an algebra identical to that of the
eight-parameter group SL(3,R) [61]. Since the free particle also possesses a similar
symmetry algebra it is therefore not surprising that under an appropriate transformation
the SORE may be transformed into that of the free particle.

In [6], the authors studied the second, third and fourth-order cases of the hierarchy of
Riccati equations and have shown the existence of Darboux functions and generators of
time-dependent constants of motion.
In this chapter we present a time-dependent generalization of the second-order Riccati
equation

ẍ + 3β x ẋ + β2x3 = 0. (7.1.1)

which is taken in the form

ẍ + 3h(t)xẋ + h2x3 + ḣ(t) x2 = 0. (7.1.2)

Clearly when the coefficient h is a constant (7.1.2) reduces to the usual second-order
Riccati equation (7.1.1). Before pursuing the issue of deriv ing a first integral of the
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time-dependent second-order Riccati equation TDSORE in (7.1.2) it is pertinent to note
the following features of the equation. Unlike its time independent counterpart of (7.1.1)
the TDSORE is not a bi-Lagrangian system. Furthermore it is actually a truncated version
of the Gambier equation [31].
Gambier in course of his classification of integrable second-order differential equations
solved the following equation, which is listed as Equation XXVII of the Painlevé-Gambier
series as given in Ince’s book [44] and occurs as Equation 15 in Gambier’s minimal list of
24 second-order equations with the Painlevé property. The Gambier equation (see [4] for a
relatively recent update) is given by

ẍ =
n− 1

n

ẋ2

x
+a

n + 2

n
xẋ+bẋ−n− 2

n

ẋ

x
σ− a2

n
x3+(ȧ−ab)x2+(cn− 2a

n
σ)x−bσ− σ2

nx
, (7.1.3)

Here a, b and c are functions of the independent variable, σ is a constant which can be
scaled to 1 unless it happens to be 0 and n is an integer. If we set b = c = 0 and assume
that n = 1 and σ = 0, then Gambier 1 reduces to a time-dependent second-order Riccati
equation which can be mapped to Gambier 14 of the Gambier’s minimal list.

Moreover the TDSORE can be shown to arise from a Riccati sequence which may be
introduced as bellow.
Let h(t) be an arbitrary differentiable function and DR denote the following differential
operator

DR :=
d

dt
+ h(t) x ,

to be called the ‘Riccati differential operator’. Next consider the sequence obtained by
applying such a differential operator to the function x in an iterative way. For example
when

n = 1, DRx =

(
d

dt
+ h(t) x

)
x = ẋ + h(t) x2,

n = 2, D2
Rx =

(
d

dt
+ h(t) x

)2

x = ẍ + 3h(t) xẋ + h2(t) x3 + ḣ(t) x2,

n = 3, D3
Rx =

(
d

dt
+ h(t) x

)3

x =
...
x + 4h(t) xẍ + 6h2(t) x2ẋ + 3h(t) ẋ2 + h3(t) x4

+5ḣ(t) xẋ + 3h(t) ḣ(t) x3 + ḧ(t) x2,

n = 4 D4x =

(
d

dt
+ h(t) y

)4

x =
....
x + 5h(t) x

...
x + 10h(t) ẋẍ + 15h2(t) x ẋ2 + 10h2(t)x2ẍ

+10h3(t) x3ẋ + h4(t) x5 + ḣ(t) (9xẍ + 8ẋ2) + 26h(t) ḣ(t) x2ẋ + 7ḧ(t) xẋ + 3ḣ2(t)x3

+4h(t) ḧ(t) x3 +
...
h (t) x2 + 6h2(t) ḣ(t) x4

(7.1.4)
and analogous expressions for higher values of n which turn out to be quite lengthy.
The equation

R(k)(x, . . . , x(k)) = Dk
Rx = 0 , k = 0, 1, . . . (7.1.5)
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defines a Riccati equation with variable coefficients of order k. Note that R(0)(x) = x, and
the particular Riccati equation R(1)(x, ẋ) = 0 obtained for k = 1 is the standard Riccati
equation but with a variable coefficient h(t),

ẋ + h(t) x2 = 0. (7.1.6)

It is thus obvious that the TDSORE corresponds to the second member of the above
sequence.
To return to the issue of deriving a first integral for the TDSORE we shall make use of
nonlocal transformation [50, 51, 52, 55, 86] to linearize the equation and there after
identify an appropriate first integral. In this process we wish to illustrate the effectiveness
of such transformations. In fact their efficacy will be even more evident when we take up
the case of third-order ODEs. In addition we will also consider a generalization of the
TDSORE and examine its relation with Sugai equation [102].

7.2 Nonholonomic transformations and first integrals

of time dependent second-order Riccati equation

In the previous chapter it was shown that Sundman transformations are often quite useful
for the determination of first integrals of second and higher-order ordinary differential
equations (ODEs), [25, 27, 28]. Such transformations, it will be recalled, are partially
nonlocal in character. Here we shall further generalize the nonlocal character of the
transformation by assuming both the new variables X and T are given by nonlocal
expressions. In this sense they are the complete opposite of point transformations.
Consider a second-order ordinary differential equation

ẍ = w(t, x, ẋ), (7.2.1)

where w(t, x, ẋ) is linear in ẋ then formally it may be recast as

ẍ + f(x, t)ẋ + g(x, t) = 0, (7.2.2)

which may be viewed as a kind of time dependent version of the Liénard equation.
suppose we seek a nonlocal transformation of (t, x) 7→ (T,X) of the form

dX = A(x, t)dx + B(x, t)dt, (7.2.3)

dT = C(x, t)dx + D(x, t)dt. (7.2.4)

such that the ODE (7.2.2) is transformed to the autonomous linear equation [86]

d2X

dT 2
= 0. (7.2.5)
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Our first objective is to determine the differentiable functions A,B, C and D which enable
such a linearization to be made for the particular case of (7.1.2). The nonlocal nature of
the above transformation may be ensured by demanding that

At 6= Bx, Ct 6= Dx. (7.2.6)

It is obvious that if such a transformation exists then in terms of the new variables we
immediately obtain a first integral

dX

dT
= constant. (7.2.7)

However from (7.2.7) it follows that such a first integral is clearly dependent on time since
when expressed in terms of the original variables x and t, it is given by

I(t, x, ẋ) =
A(x, t)ẋ + B(x, t)

C(x, t)ẋ + D(x, t)
(7.2.8)

clearly defines a time-dependent first integral of (7.2.2).

The crucial question is whether one can derive a nonlocal transformation which enables
such a first integral to be identified for a given second-order equation. In answer to this
question, we note that if (7.2.8) is indeed a first integral of (7.2.2) then we must have
dI/dt = 0. This in turn leads to the following condition:

∆(x, t)ẍ + (CAx − ACx)ẋ
3 + (C(At + Bx)− A(Ct + Dx) + DAx −BCx)ẋ

2+

+(CBt −BCt + DAt − ADt + DBx −BDx)ẋ + (DBt −BDt) = 0, (7.2.9)

where
∆(x, t) := A(x, t)D(x, t)−B(x, t)C(x, t).

Comparison with (7.2.2) shows that first of all we must have

CAx = ACx which implies C(x, t) = a(t)A(x, t), (7.2.10)

since there is no term proportional to ẋ3; while the vanishing of the coefficient of ẋ2 implies

C(At + Bx)− A(Ct + Dx) + DAx −BCx = 0. (7.2.11)

In view of (7.2.10) we may rewrite ∆(x, t) as

∆(x, t) = A(x, t)(D(x, t)− a(t)B(x, t)).

Next we make a simplifying assumption viz,

D(x, t) := a(t)B(x, t) + b(x, t)A(x, t), so that ∆(x, t) = A2(x, t)b(x, t). (7.2.12)
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Here a(t) and b(x, t) are functions to be determined. Under these circumstances (7.2.3) and
(7.2.4) reduce to the following

dX = A(x, t)[dx + S(x, t)dt], (7.2.13)

dT = a(t)A(x, t)[dx + (S(x, t) +
b

a
)dt], (7.2.14)

where
S(x, t) := B(x, t)/A(x, t)

. In view of (7.2.10) and (7.2.12) the condition (7.2.11) simplifies to

ȧ + bx = 0. (7.2.15)

Returning now to (7.2.9) we require the coefficients of ẋ in (7.2.2) to satisfy

f(x, t) =
1

∆
[CBt −BCt + DAt − ADt + DBx −BDx] , (7.2.16)

and

g(x, t) =
1

∆
[DBt −BDt] . (7.2.17)

Using (7.2.10) and (7.2.12) one can rewrite (7.2.16) as

f(x, t) = Sx −
(

2ȧ + bx

b

)
S − bt

b
, (7.2.18)

while (7.2.17) becomes

g(x, t) = St −
(

ȧS + bt

b

)
S. (7.2.19)

Thus when there exists a function S(x, t) such that (7.2.18) and (7.2.19) are satisfied then
it follows from (7.2.13) and (7.2.14) that there exists a first integral of the form

I(t, x, ẋ) =
ẋ + S

a(ẋ + S) + b
. (7.2.20)

Before presenting our main result, let us quickly see whether the above procedure works for
the following modified Emden type equation [5, 11].

Example 7.2.1

Notice that if we choose S(x, t) = βx2, b(x, t) = −kx and a(t) = kt then substitution into
(7.2.18) and (7.2.19) leads to the equation

ẍ + 3βxẋ + β2x3 = 0.

Its associated first integral, by the formula stated in (7.2.20), is

I(t, x, ẋ) =
ẋ + βx2

kt(ẋ + βx2 − x/t)
.
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7.2.1 Generalized time-dependent Riccati equation

Since the TDSORE emerges as a truncated version of the Gambier equation we consider
(7.1.3) with minor changes of notation.

ẍ =
n− 1

n

ẋ2

x
+ α

n + 2

n
xẋ + βẋ− n− 2

n

ẋ

x
σ− α2

n
x3 + (α̇− αβ)x2 + (γn− 2α

n
σ)x− βσ− σ2

nx
,

(7.2.21)

where γ = β̇
2
− β2

4
.

If we assume σ = 0 and n = 1 then the above system reduces to the generalized
time-dependent Riccati equation or Sugai equation [102]. It is evident that the Sugai
equation includes as special cases the TDSORE for the particular choice β = 0 while the
Gambier V equation, namely

ẍ = −3xẋ + β(t)x− x3 + β(t)x2, (7.2.22)

corresponds to the specific choice n = 1, σ = 0, α(t) = −1 and γ = 0. One of the main
results of this chapter is the following proposition.

Proposition 7.2.1 A time-dependent first integral of the variable coefficient second-order
equation

ẍ− [3h(t)x + r(t)]ẋ + h2(t)x3− [ḣ(t)− h(t)r(t)]x2 + λ(t)x +

(
r2(t)

4
− ṙ(t)

2

)
x = 0 (7.2.23)

is given by the function

I(t, x, ẋ) =
ẋ + S

a(t)(ẋ + S)− ȧx
(7.2.24)

where S(x, t) =
(

ä
ȧ
− r(t)

)
x
2
− h(t)x2 and λ(t) is given by the Schwarzian derivative

λ(t) =
1

2

[ ...
a

ȧ
− 3

2

ä2

ȧ2

]
.

Proof: The proof essentially revolves around finding the function S(x, t). Using (7.2.15) to
simplify (7.2.18) it follows that S must satisfy the following:

f(x, t) = −(3h(t)x + r(t)) = Sx −
(

ȧ

b

)
S − bt

b
(7.2.25)

g(x, t) = St −
(

ȧS + bt

b

)
S (7.2.26)

where g(x, t) = h2(t)x3 − [ḣ(t)− h(t)r(t)]x2 + λ(t)x +
(

r2(t)
4
− ṙ(t)

2

)
x. A particular solution

of (7.2.15) is clearly given by
b(x, t) = −ȧx, (7.2.27)
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where we have set the constant of integration to be zero. Next we make the following
ansatz for S(x, t), viz

S(x, t) = S2(t)x
2 + S1(t)x + S0(t).

Upon substitution of this into the right side of (7.2.25) and after equating the coefficients
of the different powers of x we get

S0(t) = 0, S1(t) =
1

2

(
ä

ȧ
− r(t)

)
and S2(t) = −h(t),

so that

S(x, t) =

(
ä

ȧ
− r(t)

)
x

2
− h(t)x2. (7.2.28)

It is easy to verify that this expression for S gives the required form of the function g(x, t)
when substituted in (7.2.26).

Proposition 7.2.1 A time-dependent first integral of the variable coefficient second-order
equation

ẍ + 3h(t)xẋ + h2(t)x3 + λ(t)x + ḣ(t)x2 = 0 (7.2.29)

is given by the function

I(t, x, ẋ) =
ẋ + S

a(t)(ẋ + S)− ȧx
(7.2.30)

where S(x, t) = h(t)x2 + ä
2ȧ

x and λ(t) is given by the Schwarzian derivative

λ(t) =
1

2

[ ...
a

ȧ
− 3

2

ä2

ȧ2

]
.

Proof: The proof follows from the previous proposition by setting r(t) = 0 and replacing
h(t) −→ −h(t).

Proposition 7.2.2 If a(t) be such that the function R(t) := ä/ȧ satisfies a first-order
Riccati equation then the equation (7.2.29) can be mapped to a standard variable coefficient
second-order Riccati equation.

Proof: The second-order variable coefficient Riccati equation is given by

ẍ + 3h(t)xẋ + h2(t)x3 + ḣ(t)x2 = 0

It is easy to see that when λ(t) = 0 then (7.2.29) reduces to a second-order Riccati
equation with variable coefficients. The vanishing of λ(t) leads to the first-order Riccati
equation, namely

Rt − 1

2
R2 = 0. (7.2.31)
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In a similar manner it can be shown that a first integral for the Gambier V equation
(7.2.22) is given by

I(x, ẋ, t) =
ẋ + x2

β(t)(ẋ + x2)− xβ(t)2/2

when β(t) is a solution of the first-order Riccati equation (7.2.31).
It is evident that once a first integral is obtained one can easily read off the nonlocal
transformation from its numerator and denominator respectively in view of (7.2.8).

In the following section we further illustrate the above procedure by considering the case of
third-order ODEs.

7.3 Nonholonomic Transformations for Third-Order

Differential Equations

The linearization problem in case of third-order ODEs has been studied from the
perspective of point and contact transformations in [30]. However, continuing in the same
spirit as above, we consider here a general third-order differential equation (TODE) of the
form

...
x + a0(x, t)ẍ + g2(x, t)ẋ2 + g1(x, t)ẋ + g0(x, t) = 0, (7.3.1)

and search for a nonlocal transformation such that it is mapped to the following equation

X ′′′(T ) = 0, (7.3.2)

(here X ′ = dX
dT

), by the nonlocal transformation

dX = A(x, t)dx + B(x, t)dt, dT = H(x, t)dt. (7.3.3)

Note that here we have retained the flavour of the sundman transformation for the
’time-part’ of the transformation to ensure relative simplification. It is a matter of
straightforward computation to show that the TODE (7.3.1) is mapped to (7.3.2) by the
transformation (7.3.3) provided its coefficients satisfy the following equations:

2
At

A
+

Bx

A
− B

A

Hx

H
− 3

Ht

H
= a0(x, t), (7.3.4)

3
Ax

A
− 4

Hx

H
= 0, (7.3.5)

Axx

A
− Hxx

H
− 3

Hx

H

Ax

A
+ 3

(
Hx

H

)2

= 0, (7.3.6)

2
Axt

A
−2

Hxt

H
+

Bxx

A
−Hxx

H

B

A
−3

Ht

H

Ax

A
+6

Hx

H

Ht

H
−3

Hx

H

At

A
−3

Bx

A

Hx

H
+3

B

A

(
Hx

H

)2

= g2(x, t),

(7.3.7)
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Att

A
− Htt

H
+2

Bxt

A
− 2

B

A

Hxt

H
− 3

Ht

H

At

A
+3

(
Ht

H

)2

− 3
Ht

H

Bx

A
+6

B

A

Hx

H

Ht

H
− 3

Hx

H

Bt

A
= g1(x, t),

(7.3.8)

Btt

A
− Htt

H

B

A
− 3

Ht

H

Bt

A
+ 3

B

A

(
Ht

H

)2

= g0(x, t). (7.3.9)

Thus given a TODE so that the explicit form of the coefficients a0(x, t) and gi i = 0, ..., 2
are known, the set of equations (7.3.4 -7.3.9) constitute an over determined set for the
three unknown functions A,B and H. Therefore, if upon solving the above set of equations
(7.3.4 -7.3.9) one can deduce the functions A,B and H then the linearizing transformation
can be determined and consequently equations of the form (7.3.1) may be linearized to the
free particle equation.
It is obvious that a first integral of (7.3.2) is given by

I1(t, x, ẋ, ẍ) = X ′′ = constant. (7.3.10)

The explicit form of the first integral can be immediately worked out from the
transformation (7.3.3) and has the following appearance,

X ′′ =
1

H3

[
HAẍ + (HAx − AHx)ẋ

2 + ((HAt − AHt) + (HBx −BHx)) ẋ + (HBt −BHt)
]
,

which may be written as

X ′′ =
1

H

[
A

H
ẍ +

(
A

H

)

x

ẋ2 +

((
A

H

)

t

+

(
B

H

)

x

)
ẋ +

(
B

H

)

t

]
= constant. (7.3.11)

Having explained the general idea behind the construction of a linearizing transformation
for an equation of the form (7.3.1), we proceed to the determination of the unknown
functions A,B and H. From (7.3.5), we have

H(x, t) = α(t)A3/4, (7.3.12)

where α(t) is an arbitrary function of t. Eliminating H from (7.3.6) leads to the following
equation determining the function A(x, t), namely

Axx

A
− 3

2

(
Ax

A

)2

= 0, (7.3.13)

which admits the solution

A(x, t) =
γ(t)

(2− xβ(t))2
. (7.3.14)

Here β and γ are arbitrary functions of t. Next eliminating H from (7.3.4) we have

(
B

A

)

x

+
1

4

Ax

A

(
B

A

)
=

1

4

At

A
+ 3

α̇

α
+ a0
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which has the formal solution,

B(x, t) = A3/4(x, t)

[∫
A1/4

(
At

4A
+ 3

α̇

α
+ a0

)
dx + δ(t)

]
. (7.3.15)

Note that since α, β, γ and δ are arbitrary functions of t we may choose them to be
constants in order to simplify the calculations. Secondly, having completed the
determination of the unknown functions A,B and H involved in our nonlocal
transformation, it remains to examine their compatibility with equations (7.3.7-7.3.9). In
the following we consider the case when the functions α, β, γ and δ assume the following
specific values.
Case (i) α = β = γ = 1 and δ = 0
With these values one finds that

A(x, t) =
1

(2− x)2
, H(x, t) =

1

(2− x)3/2
,

B

A
=

1

A1/4

∫ x

A1/4a0(s, t)ds. (7.3.16)

Consequently from (7.3.7-7.3.9) we arrive at the following relations:

g2(x, t) = a0x − 1

2
a0

(
Ax

A

)
− 3

4

(
Ax

A

)

x

[
1

A1/4

∫ x

A1/4a0(s, t)ds

]
, (7.3.17)

g1(x, t) = 2a0t − 3

4

(
Ax

A

)[
1

A1/4

∫ x

A1/4a0t(s, t)ds

]
, (7.3.18)

g0(x, t) =

[
1

A1/4

∫ x

A1/4a0tt(s, t)ds

]
. (7.3.19)

In general requiring the right hand sides of the above equations to match the given values
of gi(x, t), i = 0, ..., 2, may be too stringent a requirement so that alternatively we could
choose to define the gi by these very relations and thereby derive suitable third-order
ODEs admitting the first integrals of the form (7.3.11). Furthermore if we assume

a0(x, t) = h(t)f(x)

and define a function

F (x) :=
1

A1/4

∫ x

A1/4f(s)ds,

so that
B

A
= h(t)F (x),

then the expressions for gi become

g0(x, t) = ḧ(t)F (x), (7.3.20)

g1(x, t) = ḣ(t)

[
2f(x)− 3F (x)

2(2− x)

]
, (7.3.21)
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g2(x, t) = h(t)

[
f ′(x)− f(x)

(2− x)
+

3F (x)

2(2− x)2

]
. (7.3.22)

Note that the explicit form of F (x) in view of (7.3.16), is given by

F (x) = (2− x)1/2

∫ x f(s)

(2− s)1/2
ds.

Therefore a third-order equation of the form

...
x + h(t)f(x)ẍ + [g2(x, t)ẋ2 + g1(x, t)ẋ + g0(x, t)] = 0

with g0, g1 and g2 given by the equations (7.3.20-7.3.22) may be linearized to X ′′′ = 0 by
the nonholonomic transformation

dX =
1

(2− x)2
[dx + h(t)F (x)dt], dT =

1

(2− x)3/2
dt. (7.3.23)

Its associated first integral may be obtained from (7.3.11) and is then given by the
following expression

I(x, t, ẋ, ẍ) = (2− x)ẍ +
1

2
ẋ2 + h(t)

(
(2− x)F ′(x) +

F (x)

2

)
ẋ + (2− x)F (x)ḣ = constant.

(7.3.24)
Case (ii) α = 1, γ = 4 and β = δ = 0
This case is considerably simply because when β = 0 and γ = 4 it follows that
A(x, t) = H(x, t) = 1 while from (7.3.15) we have B =

∫ x
a0(s, t)ds = h(t)

∫ x
f(s)ds

(assuming a0 = h(t)f(x)). Moreover the expressions for gi, as stated above, reduce to the
following:

g2(x, t) = a0x = h(t)f ′(x), g1(x, t) = 2ḣf(x), g0(x, t) = ḧ

∫ x

f(s)ds := ḧF1(x). (7.3.25)

The explicit nature of the transformation in this case is interesting, since it does not
involve any change in the time coordinate,

dX = dx + h(t)F1(x)dt, dT = dt. (7.3.26)

The corresponding first integral is now given by

I1(x, t, ẋ, ẍ) =
[
ẍ + h(t)F ′

1(x)ẋ + ḣ(t)F1(x)
]

= constant. (7.3.27)
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nonholonomic or a nonlocal transformation

In this chapter we have computed the first integrals of the time-dependent second-order
Riccati equation and its generalization by using the method of nonholonomic
transformations. It appears that unlike Sundman transformation this method leads to
considerable computational simplification. In the latter half of the chapter we have
calculated the first integral in certain particular cases of suitably defined third-order
nonlinear equation which may be viewed as a kind of generalization of the second-order
Liénard type equation, ẍ + f(x)ẋ + g(x) = 0. Although the general class of third-order
equations may not always be amiable to such an analysis the utility of looking for nonlocal
transformations to unearth first integrals can be an interesting and fruitful exercise

In the next chapter we will consider the Jacobi Last Multiplier which was introduced in
Chapter 2 and examine its role in the context of Lagrangian and Hamiltonian dynamics.



Chapter 8

The Jacobi Last Multiplier,
Integrating Factors and the
Lagrangian formulation of differential
equations of the Painlevé-Gambier
Classification

In section 2.7 we introduced the Jacobi Last Multiplier (JLM) and dwelt on some of its
essential properties. In this chapter we shall describe certain applications of the JLM to
second-order ODEs in the context of Lagrangian dynamics.
In a series of recent papers Leach, Nucci and Tamizhmani (for example, [76, 77, 78, 79] and
references therein) have investigated the relation between integrating factors and the
Hessian. It appears that this connection has a long history, which can be traced to Jacobi’s
attempts to obtain the last multiplier [45, 46]. In 1874 Lie [56, 57] showed that point
symmetries could be used to determine Jacobi’s last multiplier (JLM). The explicit nature
of the relation between the JLM and Hessian was clarified by Rao in a article [60] and is
also mentioned in Whittaker’s book on analytical dynamics [105]. Unlike the Hamiltonian
structure of the six Painlevé equations, which have received much attention [81], the
Lagrangian formulation has not been sufficiently nurtured. In a recent paper Wolf and
Brand [106] proposed Lagrangian for Painlevé VI.

8.1 Lagrangians and the last Multiplier

For a second-order ODE

y′′ = w(x, y, y′), (8.1.1)

141
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which admits a Lagrangian function L(x, y, y′). The Euler-Lagrange equation states that

d

dx

(∂L

∂y′

)
− ∂L

∂y
= 0. (8.1.2)

Expanding the total derivative operator we get

∂2L

∂x∂y′
+ y′

∂2L

∂y∂y′
+ w

∂2L

∂y′2
− ∂L

∂y
= 0, (8.1.3)

where we have made use of the equation (8.1.1). If we have take a partial derivative with
respect to y′ then we obtain

∂

∂x

(∂2L

∂y′2

)
+

∂2L

∂y∂y′
+ y′

∂

∂y

(∂2L

∂y′2

)
+

∂w

∂y′
∂2L

∂y′2
+ w

∂

∂y′

(∂2L

∂y′2

)
− ∂2L

∂y′∂y
= 0

which implies

∂

∂x

(∂2L

∂y′2

)
+ y′

∂

∂y

(∂2L

∂y′2

)
+ w

∂

∂y′

(∂2L

∂y′2

)
+

∂w

∂y′
∂2L

∂y′2
= 0

Or,
d

dx

(∂2L

∂y′2

)
+

∂w

∂y′
∂2L

∂y′2
= 0. (8.1.4)

A comparison with the equation

∂M

∂x
+

∂My′

∂y
+

∂Mw

∂y′
= 0, (8.1.5)

which is the equation defining the last multiplier M of the equation (8.1.1), then shows
that last multiplier is given by

M =
∂2L

∂y′2
. (8.1.6)

On the other hand, given a system of first order equations

y′k = fk(x, y), y = (y1, y2, ...yn),

the JLM is a solution of the equation

d log M

dx
+

n∑

k=1

∂fk

∂yk

= 0.

It follows that, if a solution of this equation is obtained, then from a knowledge of the JLM
one can construct the Lagrangian function as

L(x, y, y′) =

∫ (∫
Mdy′

)
+ f1(x, y)y′ + f2(x, y). (8.1.7)
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8.2 Lagrangians for the Painlevé-Gambier Equations

A large number of second-order ODEs in the Painlevé-Gambier classification system belong
to the following class of equations, namely

ẍ +
1

2
φxẋ

2 + φtẋ + B(t, x) = 0. (8.2.1)

Writing this equation in the form

ẍ = F(t, x, ẋ) = −
[
1

2
φxẋ

2 + φtẋ + B(t, x)

]
,

the Jacobi Last Multiplier M for (8.2.1) is given by the solution of

d

dt
log M = −∂F

∂ẋ
. (8.2.2)

In the present case we have

M =
∂2L

∂ẋ2
= exp [φ(t, x)] . (8.2.3)

By (8.1.7) we then obtain the Lagrangian as

L(t, x, ẋ) =
1

2
eφ(t,x)ẋ2 + f1(t, x)ẋ + f2(t, x). (8.2.4)

To determine the unknown functions, f1 and f2, we substitute this Lagrangian into the
Euler-Lagrange equation of motion

d

dt

(
∂L

∂ẋ

)
=

∂L

∂x
(8.2.5)

and use (8.2.1) to get
f1t − f2x = eφB(t, x).

Then making a gauge transformation f1 = Gx and f2 = Gt + f3(t, x) allows us to satisfy
the last equation when

f3(t, x) = −
∫

eφB(t, x)dx. (8.2.6)

Consequently the final Lagrangian for (8.2.1) assumes the form

L(t, x, ẋ) = eφ(t,x) ẋ
2

2
−

∫
eφB(t, x)dx +

dG

dt
. (8.2.7)

The total derivative term obviously is of little consequence and may safely be discarded.
The conjugate momentum is defined by

p =
∂L

∂ẋ
= eφẋ and implies ẋ = e−φp.
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This leads to the Hamiltonian

H = e−φ p2

2
+

∫
eφB(t, x)dx,

by the usual Legendre transformation. It is clear that the Lagrangian obtained in the
above manner is a non standard one.
One can attempt to bring it closer to the standard form by means of the transformation

ẏ = eφ/2ẋ or y(t, x) =

∫
eφ(t,x)/2dx. (8.2.8)

We illustrate this by a specific example in the sequel.

Example 8.2.1

The Painlevé-Gambier equation XXI
This equation has the form

ẍ− 3

4x
ẋ2 − 3x2 = 0. (8.2.9)

The Jacobi Last Multiplier is given by M = x−3/2 and the corresponding Lagrangian is

L21 = x−3/2 ẋ2

2
+ 2x3/2. (8.2.10)

The associated Hamiltonian H21 provides a first integral, (i.e.,dH21

dt
= 0) namely

H21 = x−3/2 ẋ2

2
− 2x3/2. (8.2.11)

It is interesting to note that L21 and H21 both have a ‘wrong relative sign’. Consider the
transformation

x 7→ y = 4x1/4 so that ẏ = x−3/4ẋ. (8.2.12)

Under such a transformation the Lagrangian L21 assumes the more familiar form

L21(t, y, ẏ) =

[
1

2
ẏ2 +

(
2(y/4)6

)]
,

but continues to have a ’wrong relative sign’.

8.2.1 Lagrangians of the Painlevé Transcendents

The most interesting of the fifty Painlevé-Gambier equations are those which are not
replaceable by a simpler equation or combination of simpler equations i.e. irreducible and
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serve to define new transcendents. These irreducible six equations are those numbered IV,
IX, XIII, XXXI, XXXIX, and L [44]. It is convenient to tabulate and renumber them,

PI : ẍ = 6x2 + t, (8.2.13)

PII : ẍ = 2x3 + xt + α, (8.2.14)

PIII : ẍ− 1

x
ẋ2 +

1

t
ẋ− 1

t
(αx2 + β)− γx3 − δ

x
= 0, (8.2.15)

PIV : ẍ− 1

2x
ẋ2 −

[
3

2
x3 + 4tx2 + 2(t2 − α)x +

β

x

]
= 0, (8.2.16)

PV : ẍ−
(

1

2x
+

1

x− 1

)
ẋ2 +

1

t
ẋ−

[
(x− 1)2

t2
(αx +

β

x
) +

γx

t
+

δx(x + 1)

x− 1

]
= 0,

(8.2.17)

PV I : ẍ− 1

2

(
1

x
+

1

x− 1
+

1

x− t

)
ẋ2 +

(
1

t
+

1

t− 1
+

1

x− t

)
ẋ (8.2.18)

− (x− 1)(x− 1)(x− t)

t2(t− 1)2

[
α +

βt

x2
+

γ(t− 1)

(x− 1)2
+

δt(t− 1)

(x− t)2

]
= 0. (8.2.19)

In the following we derive their Lagrangians and Hamiltonians by making use of the Jacobi
Last Multiplier.

The Painlevé I equation

The PI equation may be written as

ẍ− 6x2 − t = 0. (8.2.20)

Comparison with (8.2.1) shows that φx = 0 and φt = 0 which yields for the last multiplier
M = exp φ = 1. Then from (8.2.7) we obtain

LI =
ẋ2

2
+ 2x3 + xt (8.2.21)

and the Hamiltonian as

HI =
p2

2
− 2x3 − xt. (8.2.22)

The Painlevé II equation

The PII equation may be written as

ẍ− 2x3 − xt− γ = 0. (8.2.23)

Comparison with (8.2.1) shows that φx = 0 and φt = 0 which yields for the last multiplier
M = exp φ = 1. Then from (8.2.7) we obtain

LI =
ẋ2

2
+

x4

2
+

tx2

2
+ γx. (8.2.24)
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and the Hamiltonian as

HI =
p2

2
− x4

2
− tx2

2
− γx. (8.2.25)

The Painlevé III equation

The PIII equation may be written as

ẍ− 1

x
ẋ2 +

1

t
ẋ + B(t, x) = 0, (8.2.26)

where B(t, x) = −[1
t
(αx2 + β) + γx3 + δ

x
]. Comparison with (8.2.1) shows that φx = −2/x

and φt = 1/t which yields for the last multiplier M = exp φ = t/x2. Then from (8.2.7) we
obtain

LIII =
t

x2

ẋ2

2
+ αx− β

x
+ t

(
γx2

2
− δ

2x2

)
(8.2.27)

and the Hamiltonian as

HIII =
x2

t

p2

2
+

(
β

x2
− αx

)
+

t

2

(
δ

x2
− γx2

)
. (8.2.28)

The Painlevé IV equation

The PIV equation may be written as

ẍ− 1

2x
ẋ2 + B(t, x) = 0, (8.2.29)

where

B(t, x) = −
[
3

2
x3 + 4tx2 + 2(t2 − α)x +

β

x

]
.

Unlike the previous two Painlevé equations, here we have φt = 0 so that the last multiplier
is now time independent. Indeed for the PIV equation we have M = 1/x while the
corresponding Lagrangian is

LIV =
1

x

ẋ2

2
+

[
β ln |x|+ (t2 − α)x2 +

4

3
tx3 +

3

8
x4

]
. (8.2.30)

The associated Hamiltonian is

HIV =
xp2

2
−

[
β ln |x|+ (t2 − α)x2 +

4

3
tx3 +

3

8
x4

]
. (8.2.31)



8.2 Lagrangians for the Painlevé-Gambier Equations 147

The Painlevé V equation

The PV equation may be written as

ẍ−
(

1

2x
+

1

x− 1

)
ẋ2 +

1

t
ẋ + B(t, x) = 0, (8.2.32)

where

B(t, x) = −
[
(x− 1)2

t2
(αx +

β

x
) +

γx

t
+

δx(x + 1)

x− 1

]
.

Following the same procedure as before we obtain for the Jacobi Last Multiplier

M =
t

x(x− 1)2

and the Lagrangian

LV =
t

x(x− 1)2

ẋ2

2
+

1

t

(
αx− β

x

)
− γ

x− 1
− δ

tx

(x− 1)2
. (8.2.33)

The corresponding Hamiltonian is

HV =
x(x− 1)2

t

p2

2
− 1

t

(
αx− β

x

)
+

γ

x− 1
+ δ

tx

(x− 1)2
. (8.2.34)

The Painlevé VI equation

The PV I equation is perhaps one of the most well-studied equations of the Painlevé class.
It may be written as

ẍ− 1

2

(
1

x
+

1

x− 1
+

1

x− t

)
ẋ2 +

(
1

t
+

1

t− 1
+

1

x− t

)
ẋ + B(t, x) = 0, (8.2.35)

where

−B(t, x) =
(x− 1)(x− 1)(x− t)

t2(t− 1)2

[
α +

βt

x2
+

γ(t− 1)

(x− 1)2
+

δt(t− 1)

(x− t)2

]
.

In this case we have

φx = −
(

1

x
+

1

x− 1
+

1

x− t

)
and φt =

(
1

t
+

1

t− 1
+

1

x− t

)

so that the last multiplier is given by

M = eφ =
t(t− 1)

x(x− 1)(x− t)
. (8.2.36)
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The Lagrangian for the PV I equation is found to be

LV I(t, x, ẋ) =
t(t− 1)

x(x− 1)(x− t)

ẋ2

2
+

∫
t(t− 1)

x(x− 1)(x− t)
(−B(t, x))dx +

dG

dt

LV I(t, x, ẋ) =
t(t− 1)

x(x− 1)(x− t)

ẋ2

2
+

αx

t(t− 1)
− β

x(t− 1)
− γ

t(x− 1)
− δ

x− t
+

dG

dt
. (8.2.37)

Let p be the conjugate momentum. With

p =
∂L

∂ẋ
=

t(t− 1)

x(x− 1)(x− t)
ẋ

the corresponding Hamiltonian is

HV I =
t(t− 1)

x(x− 1)(x− t)

p2

2
− αx

t(t− 1)
+

β

x(t− 1)
+

γ

t(x− 1)
+

δ

x− t
. (8.2.38)

8.3 Equations of the Liénard type

In a series of interesting papers Chandrasekhar et al have studied many nonlinear
equations of the oscillator type, using an extension of the Prelle-Singer method [8, 9, 10].
We investigate below one such generic equation of the Liénard type,

ẍ + f(x)ẋ + g(x) = 0 (8.3.1)

from the perspective of the Jacobi Last Multiplier.

8.3.1 Lagrangian for second-order equations of Liénard type

From (8.2.2) the last multiplier for the equation (8.3.1) is given by M = exp(
∫

f(x)dt).
Following [78] we introduce a new variable v by setting

∫
f(x)dt = log

(
v−α−1)

(8.3.2)

which implies
v̇ + αf(x)v = 0, (8.3.3)

with α being a non zero scalar to be determined. As a result we have

M = v−α−1

. (8.3.4)

Indeed, if we can map the original equation, (8.3.1), to the first-order equation (8.3.3) in
terms of the variable v, then a suitable Lagrangian can be easily deduced. It is obvious
that v must be linear in ẋ. In fact it is shown in [78] that such a map exists and is given by

v = ẋ +
g

αf
(8.3.5)
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provided f and g satisfy the condition

d

dx

(
g

f

)
= α(1− α)f. (8.3.6)

From (8.3.4), since M = ∂2L/∂ẋ2, we find that

L =
1

(2− α−1)(1− α−1)
v2−α−1

+ f1v + f2. (8.3.7)

Substituting this into the Euler-Lagrange equation leads to the condition

f1t − f2x =
d

dx

(
f1

g

αf

)
,

which may be satisfied by setting f1 = Gx and f2 = Gt + f3 yielding

f3x = − d

dx
(Gx

g

αf
) ⇒ f3 = −Gx

g

αf
.

The simple choice Gx = 0, i.e., f1 = 0 gives, f3 = 0 and f2 = dG/dt. Thus

L =
1

(2− α−1)(1− α−1)

(
ẋ +

g

αf

)2−1/α

+
dG

dt
, α 6= 0,

1

2
, 1. (8.3.8)

We can rescale the Lagrangian to get rid of the inconsequential scalar factors and also drop
the total time derivative term to get it into the neater form

L =

(
ẋ +

g

αf

)2−1/α

. (8.3.9)

This Lagrangian, being invariant under time translation, admits a Noether symmetry with
corresponding conserved quantity or first integral (disregarding overall scalar factors)

I =

(
ẋ +

g

αf

)1−1/α
(α− 1)fẋ− g

f
. (8.3.10)
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Example 8.3.1

We consider a generic equation of nonlinear oscillator type given by

ẍ + (k1x
q + k2)ẋ + (k3x

2q+1 + k4x
q+1 + k5x) = 0. (8.3.11)

This includes many subcases depending upon the choice of the ki, which are parameters.
The case q = 0 corresponds to a damped harmonic oscillator, while q = 1 corresponds to
the force-free Helmholtz oscillator. Substituting f and g from (8.3.11) into the condition
(8.3.6), we obtain the following equations from the different coefficients of x.

α(1− α) = (q + 1)
k3

k2
1

(8.3.12)

α(1− α) =
k5

k2
2

(8.3.13)

k1k4 + k2k3(2q + 1) = α(1− α)k2
1k2 (8.3.14)

k1k5(1− q) + k2k4(1 + q) = 3α(1− α)k1k
2
2. (8.3.15)

Equating (8.3.12) and (8.3.13) we find that

q + 1 =
k2

1k5

k2
2k3

. (8.3.16)

Using this value of q in the remaining eqns. (8.3.14) and (8.3.15) while eliminating α by
means of (8.3.13), we get

k5 =
k2

k2
1

(k1k4 − k2k3). (8.3.17)

The constant α is determined from the quadratic equation (8.3.13) and is given by

α =
1

2

(
1±

√
1− 4k5

k2
2

)
, (8.3.18)

where k5 is given in (8.3.17). Given q there exists another relation between the
ki (i = 1, ..., 5) derivable from (8.3.16) and (8.3.17), viz

k1k4

k2k3

= q + 2. (8.3.19)

Thus of the five parameters ki (i = 1, ..., 5) only three are independent and to summarize
we have the following relations :

k4 =
k2k3

k1

(q + 2)

k5 =
k2

2k3

k1

(q + 1)

α =
1

2

(
1±

√
1− 4k3

k2
1

(q + 1)

)
.
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Special cases

When q = 0, we have k1k4 = 2k2k3 and k5 = k2
2k3/k

2
1. Consequently α = 1

2

(
1±

√
1− 4k3

k2
1

)

and the equation ẍ + (k1 + k2)ẋ + (k3 + k4 + k5)x = 0, which is simply the damped
harmonic oscillator, has Lagrangian

L =

(
ẋ +

(k3 + k4 + k5)x

α(k1 + k2)

)2−1/α

.

When q = 1, we have k1k4 = 3k2k3 and k5 = 2k2
2k3/k

2
1 while α = 1

2
(1±

√
1− 8k3/k2

1). The
Lagrangian for the equation, ẍ + (k1x + k2)ẋ + k3(x

3 + 3k2/k1x
2 + 2k2

2/k
2
1x) = 0 is

L =

{
ẋ +

k3

αk1

(x2 + 2k2/k1x)

}2−1/α

.

From this Lagrangian one can easily compute the conjugate momentum to obtain the
corresponding Hamiltonian.

8.4 A system of second-order coupled equations

The extension of the above technique to a system of second-order ODEs is also possible
under certain conditions. We describe below the formulation as presented in [80]. In the
case of a system of n degrees of freedom the Lagrangian L = L(t, q, q̇), where
q = {q1, · · · , qn} and q̇ = {q̇1, · · · , q̇n} define the generalized coordinates and corresponding
velocities, we may define the ijth Jacobi Last Multiplier by

Mij =
∂2L

∂q̇i∂q̇j

, i, j = 1, . . . , n. (8.4.1)

It is assumed that the equations of motion:

q̈k = wk(t, q, q̇), k = 1, . . . , n (8.4.2)

are derivable from the Euler-Lagrange equations

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

= 0, j = 1, . . . , n. (8.4.3)

It is evident that the conjugate momenta are

pj =
∂L

∂q̇j

= pj(t, q, q̇), j = 1, . . . , n

which implies
dpj

dt
=

∂pj

∂t
+

n∑

k=1

(
q̇k

∂pj

∂qk

+ wk
∂pj

∂q̇k

)
=

∂L

∂qj

.
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This means

∂

∂t

(
∂L

∂q̇j

)
+

n∑

k=1

(
q̇k

∂2L

∂qk∂q̇j

+ wk
∂pj

∂q̇k∂q̇j

)
− ∂L

∂qj

, j = 1, . . . , n. (8.4.4)

Differentiating (8.4.4) with respect to q̇i and using the definition of the Last Multiplier
given in (8.4.1) we find

∂Mij

∂t
+

n∑

k=1

(
∂

∂qk

(q̇kMij) +
∂

∂q̇k

(wkMij)

)
+

n∑

k=1

(
∂wk

∂q̇i

Mkj − ∂wk

∂q̇k

Mij

)
+

∂2L

∂qi∂q̇j

− ∂2L

∂q̇i∂qj

= 0.

(8.4.5)
Interchanging i and j in (8.4.5) we get

∂Mji

∂t
+

n∑

k=1

(
∂

∂qk

(q̇kMji) +
∂

∂q̇k

(wkMji)

)
+

n∑

k=1

(
∂wk

∂q̇j

Mki − ∂wk

∂q̇k

Mji

)
+

∂2L

∂qj∂q̇i

− ∂2L

∂q̇j∂qi

= 0.

(8.4.6)

Adding (8.4.5) and (8.4.6) and making use of the fact that Mij = Mji we have

∂Mij

∂t
+

n∑

k=1

(
∂

∂qk

(q̇kMij) +
∂

∂q̇k

(wkMij)

)
+

n∑

k=1

(
1

2

(
∂wk

∂q̇i

Mkj +
∂wk

∂q̇j

Mki

)
− ∂wk

∂q̇k

Mij

)
= 0.

(8.4.7)
It is evident that Mij satisfies the defining relation (2.7.29) for the JLM whenever

n∑

k=1

(
∂wk

∂q̇i

Mkj +
∂wk

∂q̇j

Mki

)
= 2

n∑

k=1

∂wk

∂q̇k

Mij for each k = 1, . . . , n. (8.4.8)

A trivial way to ensure this condition is satisfied is to assume the wk’s to be velocity
independent, i.e.,

∂wk

∂q̇l

= 0 for all k, l = 1, . . . , n.

On the other hand, when i = j, the last two terms in (8.4.5) cancel leaving

∂Mii

∂t
+

n∑

k=1

(
∂

∂qk

(q̇kMii) +
∂

∂q̇k

(wkMii)

)
+

n∑

k=1

(
∂wk

∂q̇i

Mki − ∂wk

∂q̇k

Mii

)
= 0. (8.4.9)

Here also Mii satisfies (2.7.29) when the last sum of (8.4.9) vanishes, which may be ensured
by choosing the wk’s to be velocity independent. Under these circumstances all the Mij’s
satisfy the equation

∂Mii

∂t
+

n∑

k=1

(
∂

∂qk

(q̇kMii) +
∂

∂q̇k

(wkMii)

)
= 0, (8.4.10)
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as they should, provided ∂wk/∂q̇j = 0 for all k, j = 1, . . . , n. With this assumption
equations (8.4.7) and 8.4.10) always admit the solution Mij = constant. The following
examples illustrate how simple choices of Mij can be made to obtain the Lagrangians of
second-order ODEs satisfying the above velocity-independent criterion.

Example 8.4.1

Consider the system

ẍ +
α

x2
g(y/x)− λ

x3
= 0, ÿ +

β

x2
f(y/x)− µ

y3
= 0.

Here w1(x, y) = −αg(y/x)/x2 + λ/x3 and w2(x, y) = −βf(y/x)/x2 + µ/y3 respectively. On
the other hand α, β, λ and µ are arbitrary parameters while g and f are functions with
argument u = y/x. Notice that w1 and w2 are independent of the velocities. The Jacobi
Last Multiplier for this system is therefore a solution of the equation,

∂M

∂t
+

∂(Mẋ)

∂x
+

∂(Mẏ)

∂y
+

∂(Mw1)

∂ẋ
+

∂(Mw2)

∂ẏ
= 0, (8.4.11)

and admits constant solutions. We choose them as follows:

Mxy = Myx = 0 and Mxx = Myy = 1. (8.4.12)

These yield the Lagrangian

L =
1

2
(ẋ2 + ẏ2) + h1(t, x, y)ẋ + h2(t, x, y)ẏ + h3(t, x, y). (8.4.13)

Substitution of this into the Euler-Lagrange equations for x and y gives, upon using the
original equations of motion,

h1t − h3x + w1 + (h1y − h2x)ẏ = 0 (8.4.14)

h2t − h3y + w2 + (h2x − h1y)ẋ = 0. (8.4.15)

Equating the coefficients of ẋ and ẏ respectively we get the following set of equations:

h1y − h2x = 0 which implies h1 = Gx, h2 = Gy and (8.4.16)

h1t − h3x + w1 = 0 (8.4.17)

h2t − h3y + w2 = 0. (8.4.18)

These in turn give

h3x = Gxt + w1 or h3 = Gt +

∫
w1dx + r(y) (8.4.19)
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h3y = Gyt + w2 or h3 = Gt +

∫
w2dy + s(x). (8.4.20)

Consistency for h3 requires that
h3xy = h3yx

and translates into the requirement that w1y = w2x. This imposes the following condition
on the functions f and g which define the second-order system:

α

β
g′(u) + uf ′(u) + 2f(u) = 0, where u =

y

x
.

One can rewrite this as
α

β
ug′(u) +

d

du
(u2f(u)) = 0. (8.4.21)

When we use the explicit forms of w1 and w2 and make use of the last condition, the form
of the functions r(y) and s(x) occurring in (8.4.19) and (8.4.20) may be fixed and the
functional form of h3 is found to be

h3(t, x, y) = Gt −
[

α

2x2
+

µ

2y2
− 1

x

(
αg(y/x) + β

y

x
f(y/x)

)]
.

Therefore the Lagrangian is given by

L =
1

2
(ẋ2 + ẏ2)−

[
α

2x2
+

µ

2y2
− 1

x

(
αg(y/x) + β

y

x
f(y/x)

)]
+

dG

dt
. (8.4.22)

Again the total derivative term, being of little physical significance in the classical case,
may be safely discarded.
It is interesting to note that the above second-order system, though similar in some respects
to equations of the Ermakov system, is not merely a mathematical artifact. It is similar in
structure to the system studied in [98] in the context of the dynamics of stellar systems.
A similar exercise may be carried out for the following.

Example 8.4.2 (Generalized Van der Waals Potential)

ẍ = −
(
2γx +

x

r3

)
= w1(x, y)

ÿ = −
(
2γβ2y +

y

r3

)
= w2(x, y) where r =

√
x2 + y2

and γ, β are parameters. In this case the Lagrangian is given by

L =
1

2
(ẋ2 + ẏ2)−

[
γ(x2 + β2y2 − 1

r

]
+

dG

dt
. (8.4.23)

Similarly for the
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Example 8.4.3 (Henon-Heiles system)

ẍ = −(Ax + 2αxy)

ÿ = −(By + αx2 − βy2), (8.4.24)

the Lagrangian is given by

L(t, x, ẋ) =
1

2
(ẋ2 + ẏ2)−

(
A

x2

2
+ B

y2

2
+ αx2y − β

y3

3

)
+

dG

dt
. (8.4.25)

In this chapter we have discussed applications of the Jacobi Last Multiplier for the
deduction of Lagrangian functions for the second-order ODEs of the Painlevé-Gambier
classification. We have specifically deduced the Lagrangians/ Hamiltonians for the six
Painlevé equations as also other prototype equations of the Painlevé-Gambier classification.
In addition we have used the above technique to analyse a particular class of coupled
second-order equations. Besides the well-known Henon-Heiles system we have also obtained
the Lagrangian for a relatively less studied systems occurring in the context of stellar
dynamics. The Lagrangians discussed here are found to admit a Noetherian symmetry,
with an associated first integral, which are the Hamiltonians of the equations concerned.
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Chapter 9

Conclusion

In this work we have focused on a number of features associated with ordinary differential
equations. Foremost among these is the issue of obtaining first integrals for ODEs. To this
end we have exploited several tools such as Darboux polynomials, the Prelle-Singer semi
algorithm and generalised Sundman transformations. Much of our work has also been
devoted to the Painlevé-Gambier class of equations as stated in Ince’s classic text. We also
obtained first integrals for a generalized Raychaudhuri equations which has appeared in
string theory.

We have succeeded in unravelling the relationship between the so called extended
Prelle-Singer method and the adjoint symmetry equation. Thereby setting at rest any
speculation regarding the efficacy of Lie symmetries. In addition we have extended the
analysis of Lie Symmetries by including a chapter on the so called λ-symmetries and have
used them to analyse some of the Painlevé-Gambier equations; especially equations III,
VIII, XIX and XXX. Extension to third-order equations have also been considered in a
limited number of cases.

As an extension of the generalised Sundman transformation we have introduced the notion
of nonlocal transformations for both dependent and independent variables and have
demonstrated their applications in the linearization of second and higher-order differential
equations. In the process the problem of obtaining first integrals for such equations have
also been tackled.

The concept of Jacobi’s last multiplier, though it has been in existence for more than a
hundred years, appears not to be too well known to the wider community of Physicists or
Mathematicians. It is hoped that though this work the notion of the Jacobi Last Multiplier
especially its use in the context of Lagrangian dynamics will be appreciated. Besides
focusing its original role in determining the integrability of a system of first-order ODEs we
have also brought to light its relationship with Lie symmetries as well as its role in the
deduction of first integrals. As mentioned earlier the Painlevé-Gambier equations form a
recurring theme of our analysis of ODEs and consequently it is only appropriate that we
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should end this work with a derivation of Lagrangians and Hamiltonians of the six Painlevé
transcendents making use of Jacobi Last multipliers.
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Abstract

In this paper we compute first integrals of nonlinear ordinary differential equations
using the extended Prelle-Singer method, as formulated by Chandrasekar et al in J.
Math. Phys. 47 (2), 023508, (2006). We find a new first integral for the Painlevé-
Gambier XXII equation. We also derive the first integrals of generalized two-dimensional
Kepler system and the Liénard type oscillators.

1 Introduction

The problem of finding first integrals of ordinary differential equations (ODE) has a long
and interesting history which may be traced to the seminal works of Darboux and Lie
in the latter half of the nineteenth century. For an nth-order ODE, a first integral is an
expression involving the independent variable, the dependent variable and its derivatives
to order n − 1. In fact, if r such first integrals are known for an nth-order ODE, then
the latter may be reduced to an (n − r)th-order ODE. The familiar case of a simple
harmonic oscillator, is an example of a second-order ODE with a first integral given by
the mechanical energy. The latter enables us to reduce the problem to solving a first-order
ODE.

Dynamical systems, described by nonlinear oscillators, are a common occurrence in
many areas of physics and the applied sciences. The main difficulty involved in solving

Copyright c© 2008 by A Ghose Choudhury, P Guha and B Khanra
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such ODEs is that they are often nonlinear, involve several degrees of freedom, and are
usually coupled to one other in a non-trivial way. Moreover, these equations are generally
non Hamiltonian in nature and describe the time evolution of physical processes which are
usually dissipative in character.
The techniques involved in finding first integrals of systems of one or more ODEs generally
make use of integrating factors, which are functions multiplying each of the ODEs to yield
a first integral.

In 1878 Darboux showed that one can construct an integrating factor (and first in-
tegrals) of a planar polynomial differential system, if there exists a sufficient number of
invariant algebraic curves (real or complex). On the other hand for first-order scalar
ODEs, S. Lie devised a method for constructing an integrating factor from each admitted
point symmetry. Then, after almost a century, a major breakthrough in the construction
of an algorithm for solving first-order ordinary differential equations was put forward by
Prelle and Singer [1] in 1983. The method is a semi algorithmic procedure for solving
nonlinear first-order ordinary differential equations of the form

dy

dx
=
P (x, y)

Q(x, y)
, (1.1)

when P (x, y) and Q(x, y) are coprime polynomials. The Prelle-Singer (PS) method pro-
vides the form of the integrating factor when the solution of the associated system of
differential equations is expressible in terms of elementary functions. Their work has been
influential in providing some of the fundamental algebraic results required for the auto-
mated solution of ODEs using computer algebra. An extension of this method provides
the form of an integrating factor when the solution is expressible in terms of Liouvillian
functions. Recently Duarte et al [10, 11] have extended the technique to second-order
ODEs. Essentially, their objective was to look for a wider class of possible integrating
factors. To this end, they succeeded in adding the derivatives of some rational functions,
to the previously known linear combinations of logarithmic derivatives.

Most recently Lakshmanan and his coworkers have generalized and used the extended
Prelle-Singer method to obtain the first integrals and general solutions for a class of non-
linear equations [6, 7, 9]. They have also devised a procedure to construct a transformation
which removes the time-dependent part from the first integral and provides the general
solution by quadrature [8]. This procedure is shown to have a wider applicability through
several examples.

In this paper we use the extended Prelle-Singer method to derive the first integrals
of the Painlevé-Gambier class of ODEs. We derive a new first integral for the Painlevé-
Gambier XXII equation. Using this method we also show how the known first integrals of
a large class of equations, of a specific form, in the Painlevé-Gambier classification may be
deduced. In addition we analyze a Liénard type equation, (second order Riccati equation)
and a generalized two-dimensional Kepler system.

The organization of the paper is as follows. In Section 2 we briefly recollect the basic
results involved in Darboux integrability and give a brief introduction to the Prelle-Singer
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method, including the relevant definitions and results related to PS method. In Section
3, we review the extended PS method, as developed by Chandrasekar et al. In Section
4 we discuss applications of the extended PS method to ODEs of the Painlevé-Gambier
classification. Section 5 contains a discussion on second-order Liénard type equations.
Finally, in Section 6 we briefly consider applications to systems of second-order ODEs and
illustrate it with an example of a generalized two-dimensional Kepler system. We finish
our paper with a modest outlook.

2 Preliminaries

Let us consider planar polynomial differential systems

ẋ = Q(x, y) and ẏ = P (x, y), (2.1)

where P (x, y) =
∑m

i=0 Pi(x, y), Q(x, y) =
∑m

i=0Qi(x, y) are coprime polynomials in C such
that max {deg P, deg Q} = m and Pi(x, y) and Qi(x, y) are homogeneous components of
degree i. This differential system (2.1) may be described either by the vector field

D = Q(x, y)
∂

∂x
+ P (x, y)

∂

∂y
, (2.2)

or the differential form
ω = Pdx−Qdy.

The corresponding phase flow is given by the solution of the first-order ordinary differential
equation

dy

dx
=
P (x, y)

Q(x, y)
. (2.3)

Definition 2.1. Let U be an open subset of K
2. We say that a nonconstant function

I : U → K is a first integral of a vector field D on U , if and only if, D|U (I) = 0.

The tangents to the trajectories of a planar polynomial differential system are defined
everywhere [12]. If f(x, y) = 0 is the equation of an invariant curve, its tangent must
coincide with the tangents of the trajectories. In other words, the gradient to f , ∇f =
(∂f∂x ,

∂f
∂y ) and (Q,P ) must be orthogonal over the curve f(x, y) = 0:

ḟ = (Q
∂f

∂x
+ P

∂f

∂y
)f=0 = 0.

Definition 2.2. An invariant curve f(x, y) = 0 is called an algebraic curve or Darboux
polynomial of degree m when f(x, y) is a polynomial of degree m.

Definition 2.3. Let D be the vector field associated with a differential equation. A
curve f(x, y) = 0 is an invariant algebraic curve if D[f ]/f is a polynomial. The latter
polynomial λf = D[f ]/f is usually called the cofactor of the invariant algebraic curve or
Darboux polynomial.
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2.1 Darboux method

The Darboux method of constructing integrating factors and first integrals of planar ODEs,
relies essentially on the existence of invariant algebraic curves (or Darboux polynomials)
[3]. Furthermore, the maximum degree of the invariant algebraic curves is bounded [4].
Suppose the vector field D admits s distinct invariant algebraic curves fi i = 1, ..., s.
(a) If there are ni ∈ C not all zero, such that

s∑
i=1

niλfi = 0 then the function

s∏
i=1

fnii is a first integral of the vector field D. (2.4)

(b) If there exists ni ∈ C not all zero, such that

s∑
i=1

niλfi = −divD then the function

s∏
i=1

fnii is an integrating factor of D. (2.5)

These results form the essential content of Darboux integrability.

2.1.1 Extension of the Darboux method

If f, g ∈ C[x, y], then e = exp( gf ) is an exponential factor of the vector field D of degree d
if D(e)/e is a polynomial of degree at most d− 1. Thus there are two major kinds of first
integrals (1) Rational and (2) Darbouxian ⇒ f ν(exp(hg ))

µ ν, µ ∈ C.

2.2 The Prelle-Singer method

In 1983 Prelle and Singer [1, 2] devised a procedure which could not only determine poly-
nomial first integrals but more importantly could be applied to systems admitting rational
first integrals.

Suppose

ẋ = Q(x, y) and ẏ = P (x, y) (2.6)

is a system of first order ODEs. The vector field associated with this system is

D = Q
∂

∂x
+ P

∂

∂y
. (2.7)

Since this is a first-order ODE, it is integrable on an open subset U of K
2, if there exists

a first integral of the system on U .

Definition 2.4. A non zero function, R : U → K, is an integrating factor of a vector field
D on U if and only if D(R) = −div (D) ·R on U .

When an integrating factor is known, we can compute by quadrature, a first integral of
the system up to a constant. Let us therefore assume that, we have identified a sufficient
number of Darboux polynomials fi satisfying

D[fi] = λifi, (2.8)
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where the λi are cofactors. From (2.5), we have

D[R]

R
=

∑
i

ni
D[fi]

fi
= −(Qx + Py). (2.9)

Clearly Qx and Py are polynomials since Q and P are themselves polynomials; and there-
fore it is necessary that fi divides D[fi]. If we manage to find such Darboux polynomials,
then all that remains is to determine the numbers ni such that (2.9) is satisfied. This can
be achieved by equating terms of various orders xαyβ on either side and finding a consis-
tent set of values for the ni. The problem lies in determining the fi. The Prelle-Singer
method provides a semi algorithm for determining these whenever there exists a first inte-
gral which is an elementary function. This involves establishing bounds of different orders
on the fi. For example, we start with N = 1 and assume f = αx+ βy + γ; next we check
for what values of α, β and γ, f divides D[f ]. If we fail to find such an f , we go to the
next level and set N = 2 try f = αx2 + 2βxy + γy2 + δx + εy + µ and find a particular
combination which divides D[f ] and so on. It is clear that the process is semi algorithmic
by its very nature.

While the Prelle-Singer method allows for the determination of first integrals for many
planar systems, it is not applicable to linear first-order ODEs having exponential inte-
grating factors. In [10, 11] Duarte et al have extended the PS method to include such
situations. Subsequently in a series of papers [6, 8, 9] Chandrasekar et al have uncovered
rational and even non rational first integrals for a large class of oscillator type equations,
by appropriately modifying and also extending the basic idea behind the PS procedure.

3 The Extended Prelle-Singer method

Consider a second-order ODE of the generic form

ẍ+ f(x)ẋ+ g(x) = 0. (3.1)

In the existing literature such equations are called Lienard type ODEs and include a
number of important physical systems:

1. f(x) = k, g(x) = w2
0x, ⇒ ẍ+ kẋ+ w2

0x = 0 damped harmonic oscillator.

2. f(x) = αx, g(x) = βx3, ⇒ ẍ+ αxẋ+ βx3 = 0 Modified Emden equation.

3. f(x) = α + βx2, g(x) = −γx + x3, ⇒ ẍ + (α + βx2)ẋ − (γx + x3) = 0
Duffing Van der Pol oscillator.

4. f(x) = (k1x
q + k2), g(x) = k3x

2q+1 + k4x
q+1 + λ1x, where q ∈ R

The last case includes many systems like the anharmonic oscillator force free Helmholtz
and Duffing oscillator as special cases. In [9], the authors have studied this system for q =
arbitrary and deduced a number of new completely integrable cases.
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3.1 Formulation

Let us briefly review the method used by the authors to deduce first integrals of oscillator
type systems under very general conditions [7, 8, 9]. According to these calculations the
equation of motion for the second-order ODE is written in the form:

ẍ = φ(x, ẋ). (3.2)

This may be recast as a system of first order ODEs

ẋ = y, ẏ = φ(x, y) (3.3)

or as a pair of differential one forms:

Sdx = Sydt (3.4)

dy = φdt. (3.5)

Here S is an unknown function of x, y which must be determined. Addition of (3.4), (3.5)
leads to

(Sy + φ)dt = Sdx+ dy.

Assuming R to be an integrating factor of this equation we have upon multiplication

R(Sy + φ)dt −RSdx−Rdy = 0, (3.6)

which implies that if I(t, x, y) be the corresponding first integral such that

Itdt+ Ixdx+ Iydy = 0

we must have

It = R(Sy + φ), Ix = −RS, Iy = −R. (3.7)

The compatibility of these equations requires

Ixy = Iyx, Itx = Ixt and Ity = Iyt. (3.8)

From these conditions it is straightforward to derive the following equations

D[R] = −((RS) + φyR), (3.9)

D[RS] = −φxR. (3.10)

Two subcases may be distinguished,
A: when It = 0, that is when the system is conservative and
B: when It �= 0 for a non conservative system.
In case of the former, it is easy to see that S = −φ

y . Therefore one needs to determine
only the unknown function R, which is the required integrating factor. We shall analyze
case A first, since it is somewhat simpler, and postpone a discussion of the latter.
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For case A, (3.9) simplifies to

D[R] = (
φ

y
− φy)R, (3.11)

with
D = y∂x + φ∂y.

Substituting the ansatz

R =
y

T (x, y)
(3.12)

causes (3.11) to simplify further and it reduces to

D[T ] = yTx + φTy = φyT. (3.13)

Let us consider an example to illustrate the method developed thus far.
Example 1: Consider the equation

ẍ+
1

2
ψxẋ

2 + ψtẋ+B(t, x) = 0.

This is equivalent to the system of equations

ẋ = y

ẏ = φ(t, x, y) = −

[
1

2
ψxẋ

2 + ψtẋ+B(t, x)

]
so that

φy = −(ψxy + ψt) = −D[ψ].

Thus (3.13) becomes D[log T + ψ] = 0 which implies T = K exp(−ψ). Hence R =
y
K exp(ψ) = −Iy implies I = − eψ

K
y2

2 + J(x)
K , where K is a numerical constant. On the

other hand Ix = −RS implies J ′(x) = eψ(−ψty −B(t, x)). Clearly one must have ψt = 0
and B(t, x) = B(x) for a time independent first integral. In that case we obtain

I(x, y) = −
1

K

[
eψ
y2

2
+

∫ x

eψBdx

]
. (3.14)

Such a first integral occurs, therefore for all equations having the generic form

ẍ+
1

2
ψxẋ

2 +B(x) = 0, (3.15)

and may be a treated as a formula for deriving an time independent first integral.

4 First integrals of Painlevé-Gambier equations

It will be evident that the above method may be applied, in principle to a number of
equations of the Painlevé-Gambier classification. We introduce a slight change of notation,
for easy reference and illustrate this below.
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4.1 Painlevé-Gambier XII equation

Let us consider the Painlevé-Gambier XII equation

y′′ =
1

y
y′2 + αy3 + βy2 + γ +

δ

y

Comparison with (3.15) above indicates that 1
2ψy = − 1

y and hence eψ = y−2, while

B(x, y) = −
[
αy3 + βy2 + γ + δ

y

]
. Then (3.14) yields the following first integral

y′2 = αy4 + 2βy3 − 2γy − δ +K1y
2

where we have set K1 = −2KI(y, y′). We have checked that all the known x- indepen-
dent first integrals of the Painlevé-Gambier classification [13], can be obtained from (3.14).

It is of interest to know, whether there exists other first integrals, depending perhaps
on the independent variable x, for equations having a first integral given by the above
formula. This brings us actually to a discussion of case B, i.e. (It �= 0) of the previous
section.

4.2 Painlevé-Gambier XXII equation

We illustrate next, the existence of an x dependent first integral for equation XXII of the
Painlevé-Gambier classification:

d2y

dx2
=

3y′2

4y
− 1. (4.1)

A known first integral of this equation is

K =

(
y′2 − 4y

4y3/2

)
, (4.2)

which may be obtained from (3.14).
From (3.9) and (3.10), we have

D[R] = −(S + φy′)R (4.3)

D[RS] = −φyR, (4.4)

as a result of our change in notation. Here D = ∂x + y′∂y + φ∂y′ with

φ(x, y, y′) =
3y′2

4y
− 1 = φ0(y)y

′2 − 1, φ0(y) =
3

4y
. (4.5)

Closer inspection of equations (4.3) and (4.4) reveals that they are a pair of coupled first
order equations in the variables R and RS respectively. Assuming them to admit rational
solutions of the form

R =
f

g
and RS =

h

g
⇒ S =

h

f
, (4.6)
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these equations become

gD[f ]− fD[g] = −(h+ φy′f) · g (4.7)

gD[h] − hD[g] = −φyf · g. (4.8)

From a leading order analysis of the above equations, assuming f∼y′α, h ∼ y′γ and g ∼ y′β

and with φ as in (4.5), it follows that γ = α+ 1 with β being arbitrary. This suggests the
following ansatz for the y′ dependence of the functions f, g and h namely:

f(y, y′) = f0 + f1y
′ + f2y

′2,

h(y, y′) = h0 + h1y
′ + h2y

′2 + h3y
′3,

g(y, y′) = g0 + g1y
′ + g2y

′2 + g3y
′3 + g4y

′4. (4.9)

Substituting them into (4.7) and equating different powers of y′ leads to the set of equa-
tions:

−g0f1 + f0g1 = −h0g0, (4.10)

g0F1 − f0G1 = −{(h1 + 2φ0f0)g0 + h0g1}, (4.11)

−g2f1+g1F1+g0F2+f2g1−f1G1−f0G2 = −{(h2+2φ0f1)g0+(h1+2φ0f0)g1+h0g2}, (4.12)

−g3f1 + g2F1 + g1F2 + g0F3 − f2G1 − f1G2 − f0G3

= −{(h3 + 2φ0f2)g0 + (h2 + 2φ0f1)g1 + (h1 + 2φ0f0)g2 + h0g3}, (4.13)

−g4f1 + g3F1 + g2F2 + g1F3 − f2G2 − f1G3 − f0G4 = −{(h3 + 2φ0f2)g1+

(h2 + 2φ0f1)g2 + (h1 + 2φ0f0)g3 + h0g4}, (4.14)

g4F1 + g3F2 + g2F3 − f2G3 − f1G4 − f0G5

= −{(h3 + 2φ0f2)g2 + (h2 + 2φ0f1)g3 + (h1 + 2φ0f0)g4}, (4.15)

g4F2 + g3F3 − f2G4 − f1G5 = −{(h3 + 2φ0f2)g3 + (h2 + 2φ0f1)g4}, (4.16)

g4f2y − f2g4y = −h3g4. (4.17)

where
F1 = f0y − 2f2

F2 = f1y + φ0f1

F3 = f2y + φ0f2 (4.18)

and
G1 = g0y − 2g2,

G2 = g1y + φ0g1 − 3g3,

G3 = g2y + 2φ0g2 − 4g4

G4 = g3y + 3φ0g3

G5 = g4y + 4φ0g4. (4.19)
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On the other hand from (4.8) we obtain the following equations:

−h0g1 + g0h1 = 0, (4.20)

h0G1 − g0H1 = 0, (4.21)

−h2g1 + h1G1 + h0G2 + g2h1 − g1H1 − g0H2 = φ0yf0g0 (4.22)

−h3g1 +h2G1 +h1G2 +h0G3 + g3h1− g2H1− g1H2− g0H3 = φ0y(f1g0 + f0g1), (4.23)

h3G1 + h2G2 + h1G3 + h0G4 + g4h1 − g3H1−

g2H2 − g1H3 − g0H4 = φ0y(f2g0 + f1g1 + f0g2), (4.24)

h3G2+h2G3+h1G4+h0G5−g4H1−g3H2−g2H3−g1H4 = φ0y(f2g1+f1g2+f0g3), (4.25)

h3G3 + h2G4 + h1G5 − g4H2 − g3H3 − g2H4 = φ0y(f2g2 + f1g3 + f0g4), (4.26)

h3G4 + h2G5 − g4H3 − g3H4 = φ0y(f2g3 + f1g4), (4.27)

h3G5 − g4H4 = φ0yf2g4, (4.28)

where
H1 = h0y − 2h2,

H2 = h1y + φ0h1 − 3h3,

H3 = h2y + 2φ0h2

H4 = h3y + 3φ0h3. (4.29)

To solve the system of first order coupled PDEs given by (4.10)-(4.17) and (4.20)-(4.28) we
observe that, one can satisfy one half of each set identically, by making a second ansatz,
namely

fodd = godd = heven = 0. (4.30)

It then follows that
H1 = H3 = G2 = G4 = 0,

and from (4.20) we find

h1 = 0. (4.31)

Taking this in to account we are now left with the following equations from the set (4.10)-
(4.17):

g0(f0y − 2f2)− f0(g0y − 2g2) = −2φ0f0g0, (4.32)

g2(f0y − 2f2) + g0(f2y + 2φ0f2)− f2(g0y − 2g2)− f0(g2y + 2φ0g2 − 4g4)

= {(h3 + 2φ0f2)g0 + 2φ0f0g2} (4.33)

g4(f0y − 2f2) + g2(f2y + 2φ0f2)− f2(g2y + 2φ0g2 − 4g4)− f0(g4y + 4φ0g4)

= {(h3 + 2φ0f2)g2 + 2φ0f0g4} (4.34)

g4f2y − f2g4y = h3g4. (4.35)
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On the other hand from the set of equations (4.20)-(4.28), with h1 = 0 we obtain the
following four equations:

3h3 = φ0yf0, (4.36)

h3(g0y + g2 − 3φ0g0)− g0h3y = φ0y(f2g0 + f0g2), (4.37)

h3(g2y − g4 − φ0g2)− g2h3y = φ0y(f2g2 + f0g4), (4.38)

h3(g4y + φ0g4)− g4h3y = φ0yf2g4. (4.39)

Since φ0 = 3
4y it follows φ0y = −φ0

y and upon rearranging (4.39), we have

h3g4y − g4h3y = −φ0g4(h3 +
f2

y
).

Making the assumption that the coefficients of the highest powers of y′ in the expressions
for g, h are constants, say g4 = µ and h3 = ν so that g4y = h3y = 0, one obtains the
following relation determining the coefficient of the y′2 in f :

h3 +
f2

y
= 0 ⇒ f2 = −νy. (4.40)

While from (4.36) we obtain

f0 = −4νy2. (4.41)

The remaining equations (4.37) and (4.38) determine the coefficients g0 and g2, from
solutions of the following coupled linear equations:

g0y −
3

y
g0 = 2g2, (4.42)

g2y −
3

2y
g2 = 4µ. (4.43)

These conditions are consistent with the set of equations (4.32)-(4.35), as may be verified.
Furthermore, the solutions of (4.42) and (4.43) are easy to construct and are given by

g2 = −8µy and g0 = 16µy2.

Hence we finally obtain

R =
f

g
=
−νy(4y + y′2)

µ(y′2 − 4y)2
and S =

h

f
=

νy′3

−νy(4y + y′2)
. (4.44)

It is now straightforward to obtain the corresponding first integral as

I(x, y, y′) =
ν

4µ

(
x−

4yy′

y′2 − 4y

)
. (4.45)
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5 Lienard type equations

We discuss next equations of the form

ẍ+ f(x)ẋ+ g(x) = 0. (5.1)

Instead of writing this as a system of first-order equations of the usual form

ẋ = y

ẏ = φ(x, y)

where φ = −(f(x)y + g(x)), we re-write it as

ẋ = v − r
g(x)

f(x)
(5.2)

v̇ = −
1

r
f(x)v, (5.3)

subject to the condition

d

dx

(
g

f

)
=

1

r

(
1−

1

r

)
f(x), r �= 0, 1. (5.4)

Here r is a parameter. In order to determine a first integral for the system (5.2)and (5.3),
we follow the same formulation as outlined in section (3.1) and demand that the one form

R[S(v − r
g

f
)−

1

r
fv]dt−RSdx−Rdv = 0, (5.5)

be exact. This means there exists a function I(t, x, v) such that

It = R[S(v − r
g

f
)−

1

r
fv]

Ix = −RS and Iv = −R. (5.6)

If we are interested in a time independent first integral, so that It = 0, we immediately
obtain

S =
fv

r
(
v − r gf

) . (5.7)

From the compatibility of (5.6), using the above expression for S, we have the following
equation for determining the integrating factor R, viz

Rx +
fv/r(
r gf − v

)Rv = −
g(

r gf − v
)2R. (5.8)

Next we make the ansatz

R =

(
r gf − v

)
T (x, v)

, (5.9)
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and after inserting it into (5.8), obtain the following equation for determining T (x, v),

X[T ] :=

(
r
g

f
− v

)
∂T

∂x
+
fv

r

∂T

∂v
= fT. (5.10)

As Chandrasekar et al have shown, it is not necessary to obtain the general solution of
(5.10). Any particular solution of it is sufficient to determine a first integral, when it exists.
In principle this leads to a considerable simplification, which must not be underestimated.
For the problem of determining a particular solution of T , we shall use the technique
of Darboux polynomials. Notice that if f(x) be a polynomial, then in view of (5.4), we
conclude that g/f must also be a polynomial. For the vector field X as defined in (5.10)
we find that

X[h1] = X[v] =
f

r
h1 (5.11)

and

X[h2] = X

[
g

f
−

(r − 1)

r(r − 2)
v

]
=

(r − 1)

r
fh2. (5.12)

In other words, h1 = v and h2 = g
f −

(r−1)
r(r−2)v are Darboux polynomials of the vector field X

with cofactors λ1 = f
r and λ2 = (r−1)

r f respectively. Consequently, for T (x, v) = hn1

1 hn2

2 ,
we can find rational numbers such that X[T ] = fT namely n1 = n2 = 1. Thus we have
the following particular solution of (5.10):

T (x, v) = v

(
g

f
−

(r − 1)

r(r − 2)
v

)
. (5.13)

This completes the determination of the integrating factor R as

Iv = −R = −
rg/f − v

v/r(rg/f − (r − 1)v/(r − 2))
and Ix = −RS =

f

rg/f − (r − 1)v/(r − 2)
.

(5.14)

The corresponding first integral is given by

I(x, v) = log

⎡
⎣

(
r gf −

r−1
r−2v

)
vr−1

⎤
⎦

r
r−1

, r �= 0, 1, 2, (5.15)

which essentially means that

C(x, v) =

⎡
⎣

(
r gf −

r−1
r−2v

)
vr−1

⎤
⎦ , r �= 0, 1, 2 (5.16)

is a constant of motion.
Of course one could have obtained this first integral in a much more simpler way, by
observing that (5.10) admits a solution T = vr. This in turn gives R = (rg/f − v)/vr and
RS = −fv1−r/r from which one gets the first integral (5.16).
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5.1 A Liénard type nonlinear oscillator – the second order Riccati equa-

tion

We illustrate the above method with a well known example:

ẍ+ αxẋ+ βx3 = 0. (5.17)

Here f(x) = αx and g(x) = βx3. The condition (5.4) gives a quadratic equation for the
parameter r, with solution

1

r
=

1

2

[
1±

√
1− 8β/α2

]
.

If we choose the value of r, then this solution determines a relation between the parameters
α and β of the equation; conversely, given the parameters it fixes the value of r . For
example, the choice r = 3 yields β = α2

9 . Thus setting α = 3k we have β = k2 and the
equation becomes

ẍ+ 3kxẋ+ k2x3 = 0. (5.18)

This particular form is often called the second Riccati equation (and is also the Painlevé-
Gambier equation VI with q(Z)=0 of [13]). Its first integral from (5.16) is

C1(x, v) =
kx2 − 2v

v2
. (5.19)

The phase flow for the equation, under these circumstances, as determined from (5.2) and
(5.3) is

dv

dx
=

2kxv

kx2 − 2v
,

which may be separated by using the above expression for C1 viz

dv

dx
=

2kx

C1v
⇒

1

2
C1v

2 − kx2 = K2

where K2 is an integration constant.
If we desire to express C1(x, v) in terms of x and the actual velocity ẋ, then we simply
eliminate v using (5.2) to get

C1(x, ẋ) = −
2ẋ+ kx2

(ẋ+ kx2)2
,

which coincides with the results in [5]. In fact it has been shown by Cariñena et al that
this first integral plays the role of the Hamiltonian for (5.18).

6 A generalized 2D- Kepler system

In [7], the authors considered a system of second order ODE’s of the generic form

ẍ =
P1

Q1
= φ1 and ÿ =

P2

Q2
= φ2
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where it is assumed that φi(i = 1, 2) depend on t, x, ẋ, y, ẏ in general. They illustrate the
general procedure and finish off with the following example of the two-dimensional Kepler
problem.

ẍ = −
x

(x2 + y2)
3

2

ÿ = −
y

(x2 + y2)
3

2

. (6.1)

Their analysis yielded the following first integrals:

I1 =
1

2
(ẋ2 + ẏ2)−

1√
x2 + y2

I2 = yẋ− xẏ

I3 = ẋ(yẋ− xẏ)−
y√

x2 + y2
. (6.2)

corresponding to the Hamiltonian, the angular momentum and the Runge Lenz vector
respectively.
We shall consider a system which is similar to this, but of the form:

ẍ = −
x(x2 + b)

(x2 + y2)
3

2

= −
xg1(x, y)

(x2 + y2)
3

2

ÿ = −
y(3x2 + 2y2 + b)

(x2 + y2)
3

2

= −
yg2(x, y)

(x2 + y2)
3

2

(6.3)

where

g1(x, y) = (x2 + b), and g2(x, y) = (3x2 + 2y2 + b). (6.4)

As shown in [7], if I be a first integral of the coupled system such that

dI = Itdt+ Ixdx+ Iydy + Iẋdẋ+ Iẏdẏ = 0

and if we write the coupled system of equations as:

(φ1 + S1ẋ) dt− S1dx− dẋ = 0 (6.5)

(φ2 + S2ẏ) dt− S2dy − dẏ = 0 (6.6)

then we must have

It = R1(φ1 + S1ẋ) +R2(φ2 + S2ẏ)

Ix = −R1S1

Iy = −R2S2

Iẋ = −R1

Iẏ = −R2. (6.7)
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Here R1, R2 represent the respective integrating factors of the system of equations (6.5,
6.6). Compatibility of the set of equations (6.7) then yields the following:

D[S1] = −φ1x −
R2

R1
φ2x +

R2

R1
S1φ2ẋ + S1φ1ẋ + S2

1

D[S2] = −φ2y −
R1

R2
φ1y +

R1

R2
S2φ1ẏ + S2φ2ẏ + S2

2

D[R1] = (R1φ1ẋ +R2φ2ẋ +R1S1)

D[R2] = −(R2φ2ẏ +R1φ1ẏ +R2S2)

S1R1y = R1S1y + S2R2x +R2S2x

R1x =
∂

∂ẋ
(R1S1), R2y =

∂

∂ẏ
(R2S2)

R1y =
∂

∂ẋ
(R2S2), R2x =

∂

∂ẏ
(R1S1), R1ẏ = R2ẋ

Here D represents the vector field

D =
∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ φ1

∂

∂ẋ
+ φ2

∂

∂ẏ

The problem is basically to find solutions (particular) satisfying these equations. The
explicit details of how these may be simplified and reduced to a more manageable form
are contained in [7]. For the system (6.3) one particular solution is the following:

R1 = ẋ, R2 = ẏ, S1 =
x(x2 + b)

ẋ(x2 + y2)
3

2

, S2 =
y(3x2 + 2y2 + b)

ẏ(x2 + y2)
3

2

.

With these values of Ri, Si (i = 1, 2) we obtain the following first integral:

I(x, y, ẋ, ẏ) = −

[
1

2
(ẋ2 + ẏ2) +

x2 + 2y2 − b√
x2 + y2

]
. (6.8)

In fact it is easy to verify that this integral is actually the Hamiltonian. However, we
have not yet been able to deduce the analogs of the angular momentum or the Lenz vector
for this case.

7 Conclusion

In this article we have shown how the extended Prelle-Singer (PS) method, as developed
by Lakshmanan and his coworkers, can be used to deduce first integrals of certain special
classes of second order nonlinear ODEs. In particular, we have focused on the Painlevé-
Gambier type ODEs. We have found an additional first integral for the Painlevé-Gambier
XXII equation. This appears to be a new result. Using this method we have also derived a
formula for the first integrals of a particular sub-class of equations of the Painlevé-Gambier
classification. In addition, we have used a novel transformation to analyze the second order
Riccati equation (a special case of the Painlevé-Gambier VI equation). Finally we have
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applied the extended PS method to derive a first integral, of a modified form of the 2D
Kepler problem, which is an example of a system of second-order ODEs.

It would be interesting to extend the analysis to the third and higher order nonlinear
oscillator equations. Hopefully the proposed method would work for both scalar and mul-
ticomponent equations of arbitrary order. Using the first integrals we expect to study ap-
propriate Lagrangians and Hamiltonians. In fact a quantized description can be developed
using these Hamiltonian forms which can be mapped onto known quantum mechanical toy
models for the damped systems.

Finally we have observed that the method described here for determination of first
integrals is closely related to finding solutions of the adjoint symmetry equation. In our
forthcoming paper we hope to give a detail mapping and an algorithmic formulation for
these class of systems.

ACKNOWLEDGMENT We are grateful to Professor M. Lakshmanan for his inter-
est and encouragement. PG wishes to thank Professors Pepin Cariñena, Jarmo Hietarinta
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The Darboux integrability method is particularly useful to determine first integrals
of nonplanar autonomous systems of ordinary differential equations, whose associ-
ated vector fields are polynomials. In particular, we obtain first integrals for a
variant of the generalized Raychaudhuri equation, which has appeared in string
inspired modern cosmology. © 2009 American Institute of Physics.
�doi:10.1063/1.3243455�

I. INTRODUCTION

The problem of solving ordinary nonlinear differential equations is a challenging area in
nonlinear dynamics. For a two dimensional system the existence of a first integral completely
determines its phase portrait. It is well known that such systems do not exhibit chaos because of
the Poincaré–Bendixson theorem.1 According to this theorem, for a two dimensional system of
ordinary differential equations �ODEs�, which is real analytic and defined in a simply connected
domain, any compact limit set of the system is either a fixed point, a cycle, or a union of fixed
points and connections, i.e., a polycycle. In three dimension this is no longer true. In the case of
nonplanar systems, the problem of determining first integrals is a nontrivial task, in general, and
various methods have been introduced for studying the existence of such first integrals. However,
except for some special cases2 there are few known satisfactory general methods for their
determination.3–6 In 1878 Darboux7 initiated the theory of planar polynomial differential systems,
and his work provided a link between algebraic geometry and the search of first integrals.8,19 He
demonstrated how to construct first integrals of polynomial vector fields in R2 or C2. The extension
of Darboux theory of integrability to polynomial systems in Rn and Cn �for n�3� was given by
Jouanolou.9 This yielded the notion of what is today known as Darboux integrability �cf. Refs. 10
and 11�. Research in this area which lies at the crossroads of ODE theory with algebraic geometry
and differential algebra has deep implications for the problem of the center, as well as, for
Hilbert’s 16th problem on limit cycles. In an interesting survey, Schlomiuk12 has described the
early ideas of Darboux and related them to the influential paper of Prelle and Singer.13 Among
other results, Prelle and Singer showed that if a system of differential equations has an elementary
first integral then it must be computable from invariant algebraic curves. In fact, their paper is so
influential that the present version of the updated Darboux integrability is also known as extended
Prelle–Singer method. Nevertheless, it is Darboux integrability that lies at the very heart of the
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notions of Liouville integrability and the Prelle–Singer theorem, which are essentially built on its
foundation.

Lastly, it has to be mentioned that the classical and powerful method of symmetry analysis, as
formulated by Lie, is an important tool for finding solutions of differential equations and includes
various methods for determining first integrals.14 We describe the modified Darboux theory of
integrability for polynomial ODEs in three and more dimensions. We demonstrate in this paper
that the Darboux method of integrability is one of the best known methods for finding first
integrals of polynomial ODEs. Using this theory we study the existence of first integrals for a
generalized Raychaudhuri equation, which has appeared in modern string inspired cosmology.

The organization of the paper is as follows. In Sec. II we discuss the basic definitions,
background, and the Prelle–Singer method. This section is of pedagogical nature, since the meth-
ods of Darboux integrability or the Prelle–Singer technique are not very well known outside the
mathematics community. In Sec. III, we examine a system related to the Raychaudhuri equation;
appropriate for studying kinematics of a deformable media in a two dimensional nonflat space-
time; and obtain the first integrals of this equation.

II. PRELIMINARIES

Consider a system of two first-order ODEs of the form

dx1
dt
= X1�t,x1,x2� ,

dx2
dt
= X2�t,x1,x2� . �2.1�

A solution of �2.1�, namely, x1=x1�t� ,x2=x2�t�, assuming the values x1�0� ,x2�0� at t= t0 say,
defines in space a certain curve, which passes through the point P0�t0 ,x1�0� ,x2�0��, and is called
an integral curve of the system �2.1�.

In geometrical terms the Cauchy problem amounts to finding the integral curve of �2.1�
passing through the given point P0. An alternative interpretation of the solution of �2.1� treats t as
a parameter and x1=x1�t� ,x2=x2�t� as the parametric equation of a curve in the x1−x2 plane called
the phase plane. The projection of the integral curve on the phase plane then gives the trajectory
of the system. However, while from the integral curve one can define the phase trajectory
uniquely, the converse is not true, in general.

If the right hand side of �2.1� is not explicitly dependent on t then the system is said to be
autonomous; otherwise it is called a nonautonomous system.

Definition 2. 1: A first integral of the system of ODEs,

dxi
dt
= Xi�t,x1, . . . ,xn� i = 1, . . . ,n , �2.2�

is any nonconstant globally differentiable function ��t ,x1 , . . . ,xn� that retains a constant value on
any integral curve of the system.

This means its derivative with respect to t vanishes on the solution curves,

d�

dt
= 0⇒ �

i

��

�xi

dxi
dt
+

��

�t
= 0⇒ D̃��� = 0, �2.3�

where D̃ª�iXi� /�xi+� /�t is called the material derivative. For autonomous systems this reduces
to
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�
i

Xi
��

�xi
= 0, �2.4�

where D=�iXi� /�xi is just the vector field associated with the given autonomous system. In many
cases, the determination of a first integral is simplified considerably, by the existence of what are
known as second integrals.

Definition 2.2: A second integral of a vector field D is a C1 function, f = f�x1 , · ,xn� :Kn→K
such that D�f�=�f , where �=��x1 , . . . ,xn� :Kn→K.

Here K is a field of characteristic zero, and for our purposes may either be R or C. Further-
more, it is appropriate here to introduce the notion of Darboux polynomials, as the determination
of elementary first integrals is intimately connected to their existence.

Definition 2.3: The polynomial second integrals for polynomial vector fields are called Dar-
boux polynomials (monic irreducible polynomials).

Finally one should mention what we mean by elementary first integrals. These are first inte-
grals involving elementary functions only, which for the present purpose may be roughly stated as
follows.

Definition 2.4: A function F�x1 , . . . ,xn� ,�Cn is said to be elementary if it belongs to the set S,
which in turn is obtained from rational functions on Ck ,k=0,1 , . . ., using a finite series of the
following operations: �a� algebraic operations such as addition, subtraction, multiplication, and
division, (b) solution of algebraic equations, (c) derivations, and (d) exponential and logarithmic
operations.

Note that if in addition we include the operation of integration, then S becomes the set of
Liouvillian function.

A. The Darboux integrability method

Let us consider planar polynomial differential systems,

ẋ = Q�x,y� and ẏ = P�x,y� , �2.5�

where P�x ,y�=�i=0
m Pi�x ,y� ,Q�x ,y�=�i=0

m Qi�x ,y� are coprime polynomials in C such that
max�deg P ,deg Q�=m and Pi�x ,y� and Qi�x ,y� are homogeneous components of degree i.

The planar differential system �2.5� may alternatively be described by the following vector
field:

D = Q�x,y�
�

�x
+ P�x,y�

�

�y
, �2.6�

or a differential form

� = Pdx − Qdy .

The corresponding phase-flow being given by the solutions of first-order ODE,

dy

dx
=
P�x,y�
Q�x,y�

. �2.7�

The tangents to the trajectories of a planar polynomial differential system are defined every-
where. If f�x ,y�=0 is the equation of an invariant curve, its tangent must coincide with the
tangents of the trajectories. In other words, the gradient to f , �f = ��f /�x ,�f /�y�, and �Q ,P� must
be orthogonal over the curve f�x ,y�=0,

ḟ = �Q� f

�x
+ P

� f

�y
	
f=0
= 0.
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An invariant curve f�x ,y�=0 is called an algebraic curve of degree m when f�x ,y� is a
polynomial of degree m.

Let D be the vector field associated with differential equation. A curve f�x ,y�=0 is an invari-
ant algebraic curve if D�f� / f is a polynomial. The latter polynomial � f=D�f� / f is usually called
the cofactor of the invariant algebraic curve.

The system �2.5� is integrable on an open subset U of K2 �K can be either R or C� if there
exists a nonconstant function I :U→K, called a first integral of the system on U, which remains
constant on all solutions curves �x�t� ,y�t�� of the system contained in U. The formal definition of
a first integral of a vector field is as follows.

Definition 2.5: Let U be an open subset of K2. We say that a nonconstant function I :U→K is
a first integral of a vector field D on U, if and only if D 
U�I�=0.

It has been found that the existence of invariant algebraic curves �real or complex� forces the
integrability of a differential system �2.5�. This is the essential concept behind Darboux’s theory of
integrability, and arose in course of his analysis of differential equations in the complex projective
plane.

Suppose the vector field admits s distinct invariant algebraic curves f i i=1, . . . ,s.

�a� If there are ni�C not all zero, such that �i=1
s ni� f i

=0 then the function �i=1
s f i

ni is a first
integral of the vector field D.

�b� If there exists ni�C not all zero, such that �i=1
s ni� f i

=−div D, then �i=1
s f i

ni is an integrating
factor of D.

Improvements upon the Darboux theory have been attempted by many mathematicians. For
instance, Juanolou studied the existence of rational first integrals for differential systems.9 A
rational first integral is more useful than a Darbouxian one because taking into account it and its
inverse, there is a first integral defined at any point of the plane. Further improvement has been
made by invoking exponential factors. If f ,g�C�x ,y�, we say that e=exp�g / f� is an exponential
factor of the vector field D if D�e� /e is a polynomial of degree at most d−1. The extension to such
cases is given in Ref. 15.

In view of the above, one may identify two clearly distinguishable classes of first integrals,
namely, the rational ones and those which are Darbouxian, that is, having the following essential
structure f��exp�h /g���, where, in general, � ,��C. In the Prelle–Singer method, it is shown that
whenever a vector field D has an elementary first integral, the latter can be computed using only
the invariant algebraic curves. Clearly, these first integrals may be found using the Darboux
approach.

A major step toward the construction of an algorithm for solving first-order ODEs was put
forward by Prelle and Singer.13 In its original form, this method is a semialgorithmic procedure for
solving nonlinear first-order ODEs of the form �2.7�, when P�x ,y� and Q�x ,y� are polynomials,
with coefficients defined on the field of complex numbers. The Prelle and Singer procedure can,
not only determine polynomial first integrals, but more importantly may be applied to systems
admitting even rational first integrals. On the other hand Singer in 1994 showed that for Liouvil-
lian first integrals, their integrating factors are given by Darbouxian functions.16

Finally, we note that if an integrating factor is known then we can compute by quadrature a
first integral of the system up to a constant.

Definition 2.6: We say that a nonzero function R :U→K is an integrating factor of a vector
field D on U if and only if

D�R� = − div�D� · R

on U.
If R�x ,y� be an integrating factor of Eq. �2.7�, then clearly

RPdx − RQdy = 0 and �RP�y = − �RQ�x, �2.8�

where the subscripts denote partial derivatives. The latter may be written as
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D�R� = �Q�x + P�y��R� = − div�Q,P�R = − �Qx + Py�R . �2.9�

Prelle–Singer then show that if the ODE has an elementary first integral then it may be written in
the following form:

R =�
i

f i
ni, �2.10�

where f i are Darboux polynomials and ni are rational numbers.
If we can identify a sufficient number of Darboux polynomials f i satisfying

D�f i� = �i f i, �2.11�

where �i are suitable polynomials, then

D�R�
R

=�
i

ni
D�f i�
f i

= − �Qx + Py� . �2.12�

Clearly Qx ,Py are polynomials since Q ,P are themselves polynomials; and therefore it is neces-
sary that f i divides D�f i�. If we manage to find such Darboux polynomials, then all that remains is
to determine the numbers ni such that �2.12� is satisfied. This can be achieved by equating terms
of various orders x�y� on either side and finding a consistent set of values of the ni’s. The problem
lies in determining the f i’s, and the Prelle–Singer method provides a semialgorithm for determin-
ing these, whenever there exists a first integral which is an elementary function. This involves
establishing bounds of different orders on the f i’s. For example, we start with N=1 and assume
f =�x+�y+	; next we check for what values of � ,� and 	 , f divides D�f�. If we fail to find such
an f , we go to the next level and set N=2, try f =�x2+2�xy+	y2+
x+�y+� and find a particular
combination which divides D�f�, and so on. It is clear that the process is semialgorithmic by its
very nature.

One should point out that in the event

D�R� = 0, �2.13�

then it is obvious that R is itself a first integral, since the equation is then exact.

III. THE GENERALIZED RAYCHAUDHURI EQUATION IN A TWO DIMENSIONAL
DEFORMABLE MEDIA AND ITS FIRST INTEGRALS

Having explained the general procedure, we present the main result of this communication. In
the study of spatially homogenous perfect fluid models in general relativity the relevant equations
usually appear as a system of coupled ODEs. When expressed in terms of expansion-normalized
variables these equations admit a symmetry which allows the equation for time evolution of
expansion � to decouple leading to the Raychaudhuri equation.17

In Ref. 18 the authors have considered geodesic flows on the surface of a deformable media
and have deduced how the expansion, shear, and rotation of such flows evolve with time. The
deformations of the media �at least locally� may be characterized in terms of time evolution of a
deformation vector �� ,
 ,w�, where �, 
, and w represent the expansion �E�, shear �S�, and
rotation �R�, respectively. The kinematics can be quantified in terms of these �ESR� variables and
leads to the generalized Raychaudhuri equation for a two dimensional curved surface of constant
curvature. When the exact solutions of the geodesic equations are used in them, one is led to the
following system, after suitable relabeling of the variables involved �see Eqs. �2.20�–�2.23� of Ref.
18�:

ẋ + 1
2x
2 + �x + 2�y2 + z2 − t2� + 2� = 0, �3.1�

ẏ + �� + x�y + 	 = 0, �3.2�
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ż + �� + x�z + 
 = 0, �3.3�

ṫ + �� + x�t = 0. �3.4�

One must not interpret t here as the time, it is simply at par with variables x ,y ,z. However ẋ , ẏ,
etc., stand for the derivative of these variables with respect to the appropriate “temporal variable”
relevant to the model. Thus from a mathematical point of view the above equations form a
nonplanar dynamical system. Note that �, �, 	, and 
 are suitable parameters of the model.

The vector field D is given by

− D = �1
2
x2 + �x + 2�y2 + z2 − t2� + 2�	 �

�x
+ ��� + x�y + 	�

�

�y
+ ��� + x�z + 
�

�

�z
+ ��� + x�t�

�

�t
.

It can be easily verified that with f1=−�
 /	�y+z we have

D�f1� = D�− 


	
y + z
 = − �� + x�f1, so that �1 = − �� + x� . �3.5�

Similarly we find f2= t to be another Darboux polynomial whose associated eigenpolynomial is
again �2=−��+x�=�1. Consequently the exactness condition D�R�=0 which implies �i

2ni�i=0
leads to ��+x��n1+n2�=0 or n2=−n1. Making the choice n1=−1 we obtain a first integral given by

I1�x,y,z,t� =
t

�− 


	
y + z	 . �3.6�

A. Additional new first integrals

On the other hand for the following specific choice of the parameters 	=
=0 one finds the
following Darboux polynomials:

D�gi� = − �� + x�gi�i = 1,2,3� with g1 = y, g2 = z, g3 = t , �3.7�

and

D�g4� ª D�z2 + t2 + zt� = − 2�� + x��z2 + t2 + zt� . �3.8�

Hence, the exactness condition D�R�=0 implies

�
i

ni�i = 0⇒ �n1 + n2 + n3 + 2n4��� + x� = 0. �3.9�

Choosing n1=n2=1 and n3=−1,n4=−
1
2 we get another first integral of the form

I =
yz

t�z2 + t2 + zt�1/2 . �3.10�

It will be noticed that all the above first integrals are independent of the variable x. To get a first
integral explicitly dependent on x ,y ,z , t, we notice that when all the parameters �=�=	=
=0
then the following Darboux polynomial depending on x is obtainable

− D�g1� ª − D�y2 + z2 − t2 − 1
4x
2� = x�y2 + z2 − t2 − 1

4x
2� , �3.11�

with associated eigenpolynomial given by �1=−x. In addition the following are Darboux polyno-
mials of degree of 2:

− D�g2� ª − D�zt� = 2xg2 ⇒ �2 = − 2x ,
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− D�g3� ª − D�yz� = 2xg3 ⇒ �3 = − 2x ,

− D�g4� ª − D�yt� = 2xg4 ⇒ �4 = − 2x . �3.12�

The exactness condition,

�
i

ni�i = 0 implies − x�n1 + 2�n2 + n3 + n4�� = 0,

which may then be satisfied by the following choice n2=n3=n4=−
1
2 and n1=3, leading to the

rational first integral,

I�x,y,z,t� =
�y2 + z2 − t2 − 1

4
x2	3

yzt
. �3.13�

B. Derivation of first integrals of two dimensional variant of generalized
Raychaudhuri’s equation: The traditional approach

Recently Grammaticos �we are grateful to Basil Grammaticos for communicating this to us�
gave a simple method to compute the first integral of the generalized Raychaudhuri’s equation by
direct manipulations of the generalized system of Eqs. �3.1�–�3.4�. First of all we translate x so as
to put � to zero �this only changes the value of ��. Next a scaling of y and z brings 	 and 
 to 1.
Of course this changes the equation for ẋ which is not so significant. Therefore, one arrives at

ẏ + xy + 1 = 0, ż + xz + 1 = 0. �3.14�

It is clear that we must introduce the sum and difference u= �y+z� /2 and w=y−z to obtain

u̇ + xu + 1 = 0 and ẇ + xw = 0. �3.15�

Since we also have

ṫ + xt = 0, �3.16�

it is obvious that the difference of logarithmic derivatives of w and t is zero and thus the invariant
is

I = t/w .

In fact, it is interesting to note that the invariants �3.10� and �3.13� may also be obtained in a
similar fashion. For instance, when �=	=
=0, then y /z ,y / t are invariants and the first integral
given in Eq. �3.10� is nothing but a combination of these two invariants, as can be easily verified.
But when in addition �=0, setting z=�y and t=�y, where � ,� are constants, the system of Eqs.
�3.1�–�3.4� reduces to the following:

ẋ + 1
2x
2 + cy2 = 0, �3.17�

ẏ + xy = 0. �3.18�

Here the constants � ,� have been lumped into an overall constant c. One can use �3.18� to
eliminate the variable x from �3.17� and get

−
ÿ

y
+
3

2
� ẏ
y
	2 + cy2 = 0, �3.19�

which by the transformation w=1 /y and the choice c= 12 , may be written in the canonical form,
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ẅ −
ẇ2

2w
+
1

2w
= 0. �3.20�

This is Eq. �32� in Ince20 and the invariant is K= ẇ2−1 /w2. Going back to the original variables
we find K=x2 /y2−y2. The invariant given by �3.13� is just a combination of K and the two
previous invariants viz y /z ,y / t.

IV. CONCLUSION

In this paper we have illustrated how the Darboux theory of integrability may be used to
determine the first integrals of the generalized Raychaudhuri equation. This is a powerful method
and is likely to be of use to a wider audience of physicists and other researchers especially for
those working with systems of ODEs, regardless of any specific fields.
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Abstract

We consider the role of the adjoint equation in determining explicit integrating
factors and first integrals of nonlinear ODEs. In Chandrasekar et al (2006
J. Math. Phys. 47 023508), the authors have used an extended version of the
Prelle–Singer method for a class of nonlinear ODEs of the oscillator type.
In particular, we show that their method actually involves finding a solution
of the adjoint symmetry equation. Next, we consider a coupled second-order
nonlinear ODE system and derive the corresponding coupled adjoint equations.
We illustrate how the coupled adjoint equations can be solved to arrive at a first
integral.

PACS numbers: 02.40.Yy, 02.30.Hq
Mathematics Subject Classification: 58F05, 70H35

1. Introduction

The study of nonlinear ordinary differential equations (ODEs) has been an ongoing endeavor
for well over two centuries now, with significant contributions from many of the greatest
mathematicians of all times such as Euler, Lie, Painlevé, Poincaré to mention just a few. Their
contributions have ranged from finding explicit solutions of ODEs, to developing general
methods of classifications, to a qualitative analysis of their solutions etc. These in turn have
often led to the opening up of entirely new branches of study in algebra, topology, geometry
and have shed new light on several physical phenomena.

Over the years many techniques have been developed to obtain exact solutions of various
kinds of ODEs. However, there does not exist any single common method for obtaining their
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solutions. Nevertheless, the apparently different techniques share one common feature: they
somehow tend to exploit the symmetries of ODEs. Consequently, symmetry analysis of ODEs
has become one of the most powerful tools for analyzing them.The foundations of this method
are contained in the works of Sophus Lie [1, 2].

It is also well known that the existence of a sufficient number of first integrals greatly
simplifies the process of solving any ODE. Having said this, it is not always quite obvious what
these first integrals are. Indeed, their determination is, in general, a non-trivial task. In the case
of conservative mechanical systems, one often has just a single first integral—the energy. In
this context, the semi-algorithmic procedure developed by Prelle and Singer deserves mention
[4]. In its original version it applied to first-order ODEs involving rational functions with
coefficients belonging to the field of complex numbers C. Subsequently their method, which
involved the use of Darboux polynomials, was extended by Singer to include Liouvillian first
integrals [14], by Duarte et al [5, 6] and also by Man and MacCullum [13]. Chandrasekhar
et al have also extended the analysis in a series of papers [7–9].

Even though systematic techniques for solving nonlinear ODEs can be traced to the
seminal works of Lie, certain aspects of the subject appear to have lain dormant for over a
century. Notable among these is the notion of their linearization. Of late it has received renewed
attention and notable progress has been made in this regard. In fact, Chandrasekar et al have
recently proposed an extended Prelle–Singer method, based on generalized transformations,
to linearize a class of equations that cannot be linearized by invertible point transformations
[7].

In this paper we show how the extended Prelle–Singer method as proposed by
Chandrasekar et al may be incorporated into the existing adjoint symmetry equation method.
Essentially, as their method deals with a pair of first-order equations, in the variables R and
S (to be called the RS-pair), these can be combined to obtain the corresponding second-order
adjoint symmetry equation.

It is natural to enquire if similar analogs/correspondences may be identified between
the adjoint equation method and the RS-pair method for coupled second-order systems. The
answer is affirmative. In fact, by using a coupled version of the adjoint symmetry equation,
we derive the first integral for a relatively new system [12], which has appeared in connection
with stellar dynamics.

This paper is organized as follows. In section 2 we recall certain standard results
concerning the solution of ODEs by using first integrals, and introduce the linearized symmetry
equation, for determining the Lie point symmetry generators. Section 3 reviews the extended
Prelle–Singer method as outlined in [8, 9] and contains a derivation of the adjoint symmetry
equation, based on this approach. We illustrate the relative advantages of these methods with
a few simple examples. Section 4 is dedicated to coupled second-order ODEs.

2. Preliminaries

Consider an nth-order ODE in the normal form

y(n) = w(x, y, y ′, . . . , y(n−1)), where y(k) = dky

dxk
. (2.1)

Corresponding to this ODE, there exists an equivalent first-order partial differential equation
(PDE) in (n + 1) variables [3, 10, 11],

D̃f = (∂x + y ′∂y + y ′′∂y ′ + · · · + w∂y(n−1) )f = 0, (2.2)

in which the quantities y ′, y ′′. . . are treated as independent variables at par with x, y.

2
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Their equivalence is provided by the first integrals of (2.1). By definition a first integral is
a global function I = I (x, y, y ′, . . . , y(n−1)) that is constant along the solutions of (2.1), i.e.,

dI

dx
= D̃I = Ix + y ′Iy + y ′′Iy ′ + · · · + wIy(n−1) = 0. (2.3)

Having determined a first integral, say I = I (x, y, y ′, . . . , y(n−1)) = I0, one can invert it to
obtain

y(n−1) = w1(x, y, y ′, . . . , y(n−2); I0)

provided Iy(n−1) �= 0. This shows that the existence of a first integral allows for the reduction
in the order of the differential equation by 1. Furthermore, it is evident that every first integral
is a solution of the linear PDE (2.2) and conversely.

Let us assume φα (α = 1, . . . , n) denote a set of n functionally independent solutions of
(2.1)/(2.2). Since each φα is a first integral, one has

φα(x, y, y ′, . . . , y(n−1)) = Iα
0 , α = 1, 2, . . . , n. (2.4)

Consequently, by eliminating all derivatives from (2.4) one arrives at the general solution of
(2.1) in the form

y = y
(
x; I 1

0 , . . . , I n
0

)
,

the Iα
0 ’s being essentially constants of integration.
As mentioned earlier, the determination of even a single first integral is in most cases a

non-trivial task; hence while in principle the above procedure is fine, its practical application
is often a daunting task, to say the least.

It is also well known that symmetries play a crucial role in the solutions of differential
equations. In fact much of the existing literature on symmetries of ODEs is restricted to what
are known as Lie point symmetries. The differential equation (2.1)/(2.2) is said to admit a
Lie point symmetry with generator

X = ξ(x, y)∂x + η(x, y)∂y + η(1)∂y ′ + · · · + η(k)∂y(k) , where η(i) = dη(i−1)

dx
− y(i) dξ

dx
,

if

[X, D̃] = gD̃ (2.5)

holds. Here, g = g(x, y, y ′, . . . , y(n−1)) is some function and η(i)’s denote the prolongations
of the vector field (infinitesimal generators) X(0) = ξ(x, y)∂x + η(x, y)∂y . For an nth-order
ODE (2.1) the infinitesimal symmetry generators, when they exist, are determined from the
linearized symmetry condition,

η(n) = ξwx + ηwy + η(1)wy ′ + · · · + η(n−1)wy(n−1) , (2.6)

when (2.1) holds [11]. In terms of the characteristic, Q := η − y ′ξ , this condition may be
written as

D̃nQ − wy(n−1) D̃(n−1)Q − · · · − wy ′D̃Q − wyQ = 0. (2.7)

For example when y ′′ = w(x, y, y ′), the linearized symmetry condition is a second-order
linear PDE

D̃2Q − wy ′D̃Q − wyQ = 0 (2.8)

with vector field

D̃ = ∂x + y ′∂y + w(x, y, y ′)∂y ′ .
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3. Adjoint symmetries and integrating factors

The following equation is known as the adjoint of the linearized symmetry condition (2.7),
and its solutions are usually called the adjoint symmetries

D̃n� + D̃n−1(wy(n−1)�) − D̃n−2(wy(n−2)�) + · · · + (−1)n−1wy� = 0. (3.1)

It must be stressed however that these solutions are neither symmetries nor generators of
symmetries, and it is more appropriate to call a solution a cocharacteristic [11]. A systematic
procedure for finding the solutions of (3.1) is to use an ansatz for �, for example, to assume
that they are independent of y(n−1) or to even assume a suitable rational structure.

3.1. Review of the extended Prelle–Singer method

Let us consider once again the equation

y(n) = w(x, y, y ′, . . . , y(n−1)), (3.2)

together with the base one-forms dx, (dy − y ′ dx), . . . , (dy(n−1) − wdx). The null form
obtained by multiplying all but the first one-form by functions Si(x, y, y ′, . . . , y(n−1)) where
i = 0, . . . , n − 1 and demanding that after addition the resultant one-form be exact is

−(S0y
′ + S1y

′′ + · · · + Sn−2y
(n−1) + Sn−1w) dx

+ (S0 dy + S1 dy ′ + · · · + Sn−2 dy(n−2) + Sn−1 dy(n−1))

= dI (x, y, y ′, . . . , y(n−1)) = 0. (3.3)

This implies

Ix = −(S0y
′ + S1y

′′ + · · · + Sn−2y
(n−2) + wSn−1) (3.4)

Iy = S0, Iy ′ = S1, . . . , Iy(n−1) = Sn−1. (3.5)

Clearly I is a first integral of the equation (3.2), provided it satisfies the integrability
criteria

Ixy(j) = Iy(j)x, j = 0, . . . , n − 1, (3.6)

Iy(j)y(k) = Iy(k)y(j) , 0 � j < k � n − 1. (3.7)

The vector field associated with (3.2) is

D̃ = ∂

∂x
+ y ′ ∂

∂y
+ · · · + w

∂

∂y(n−1)
, (3.8)

in terms of which the integrability conditions (3.6) may be expressed as follows:

−D̃[Sn−1] = (wy(n−1)Sn−1 + Sn−2) (3.9)

−D̃[Sn−2] = (wy(n−2)Sn−1 + Sn−3) (3.10)

...

−D̃[S2] = (wy ′Sn−1 + S0) (3.11)

−D̃[S0] = wySn−1. (3.12)

4



J. Phys. A: Math. Theor. 42 (2009) 115206 P Guha et al

The remaining integrability conditions (3.7) are all satisfied if

∂Sn−1

∂y(j)
= ∂Sj

∂y(n−1)
, 0 � j � n − 2. (3.13)

Our primary interest is to know Sn−1, since the remaining ones can be determined algebraically
from (3.9)–(3.12) in a recursive manner. Eliminating the Si’s by successively applying the
vector field D̃ to (3.9) and using the remaining ones, we obtain finally

D̃n[Sn−1] + D̃n−1[wy(n−1)Sn−1] − D̃n−2[wy(n−2)Sn−1] + · · · + (−1)n−1wySn−1 = 0. (3.14)

But this is precisely the adjoint equation corresponding to the linearized symmetry
equation (3.1), [11]. Thus the integrating factors of (2.1) are just the solutions of (3.14),
which fulfil the integrability criteria stated in (3.13). Consequently, determination of the
integrating factor Sn−1 of (3.2) is basically equivalent to finding a solution of this equation.
(The connection with the notation used in [9] is established by the following substitutions:
Sj −→ RSj+1,∀j = 0, . . . , n − 3 and Sn−1 −→ R.). The usual procedure to tackle such
PDEs is to make an ansatz for Sn−1, for example assuming it to be a polynomial in y(n−1) of
some suitable degree, and then obtaining its coefficients in a recursive manner. In their works,
Chandrasekar et al have made a very interesting ansatz, in which they assumed a rational form
for Sn−1. As a consequence, instead of solving the adjoint equation directly, they solved the set
(3.9)–(3.12) of first-order equations by making appropriate ansätze for the Si’s. Suppose �i

be the solution(s) of the adjoint equation. Setting Sn−1 = �i one can calculate the remaining
Sj ’s in a recursive manner and check if (3.13) holds. In the event such an integrating factor
exists and satisfies the integrability condition, its associated first integral may be obtained from
the relation

I i =
∫

Si
0(dy − y ′ dx) + Si

1(dy ′ − y ′′ dx) + · · · Si
n−1(dy(n−1) − w dx). (3.15)

Essentially, therefore, one can choose to either solve the adjoint equation directly and
obtain Sn−1 through some suitable ansätze or make suitable ansätze for the Sk’s and solve
a set of n first-order PDEs. In general the former involves solving a single higher order
equation, while the latter involves solving a system of first-order linear PDEs. It appears from
the works [7–9] that the latter is much easier to implement, as far as practical computations
are concerned. In the following, we illustrate these points with examples of second-order
equations.

3.2. Some illustrative examples

Example 1. y ′′ = w(x, y, y ′) = 3y ′2
y

+ y ′
x
.

Here the system of coupled first-order PDEs for the unknown functions S0, S1 is:

D̃S1 = −(wy ′S1 + S0) (3.16)

D̃S0 = −wyS1, (3.17)

where D̃ = ∂x + y ′∂y + w∂y ′ ; the integrability condition is simply

S1y = S0y ′ . (3.18)

The adjoint equation is

D̃2S1 + D̃(wy ′S1) − wyS1 = 0. (3.19)

5
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Assuming � = S1 to be a solution of (3.19) independent of y ′, we have upon equating the
coefficients of different powers of y ′ the following set of equations:

15� + 9y�y + y2�yy = 0

3� + 3x�x + y�y + xy�xy = 0

−� + x�x + x2�xx = 0.

Their structure suggests an ansatz of the form � = xαyβ . One can verify that this leads to
three solutions, namely,

�1(x, y) = x

y3
, �2(x, y) = 1

xy3
and �3(x, y) = 1

xy5
.

However, only �1 and �2 are acceptable, as the other does not satisfy the integrability criterion.
The results are summarized below along with the respective first integrals:

(i) �1 = S1
1 = x

y3
, S1

0 = − x

y3

(
2

x
+

3y ′

y

)
, with I 1(x, y, y ′) = xy ′ + y

y3

(ii) �2 = S2
1 = 1

xy3
, S2

0 = − 3y ′

xy4
, with I 2(x, y, y ′) = y ′

xy3
.

The first integral I 2 was obtained by Duarte et al in [5]. But for some reason the other one
was not mentioned.

Example 2. In this example we study the equation

y ′′ = w(x, y, y ′) = −(kyy ′ + λy),

where k, λ are constants, which represents a damped harmonic oscillator. As before one has
to solve the adjoint symmetry equation (3.1) for n = 2, namely,

(wxy ′ + y ′wyy ′ + wwy ′y ′ − wy)� + wy ′�x + (w + y ′wy ′)�y + (wx + 2wwy ′ + y ′wy)�y ′

+ �xx + 2y ′�xy + y ′2�yy + 2w�xy ′ + 2wy ′�yy ′ + w2�y ′y ′ = 0.

Solving this PDE is a rather daunting task even when w(x, y, y ′) is fairly simple. It is therefore
natural to make certain simplifying assumptions regarding the functional dependence of �.
For instance one can begin by assuming � to be independent of a particular variable, say x,
and see if that leads to a more manageable form of the adjoint equation. Alternatively, one
may at the very outset assume that � depends on any one of the three variables x, y or y ′.
The choice of procedure to be adopted is one of sheer convenience. We illustrate this by first
making the simplifying assumption �x = 0, which leads to

(wxy ′ + y ′wyy ′ + wwy ′y ′ − wy)� + (w + y ′wy ′)�y + (wx + 2wwy ′ + y ′wy)�y ′

+ y ′2�yy + 2wy ′�yy ′ + w2�y ′y ′ = 0.

This is a linear parabolic PDE. Since w = −(kyy ′ + λy) we have

wx = wy ′y ′ = 0, wy ′ = −ky, wy = −(ky ′ + λ) and wyy ′ = −k.

As solving this PDE is still rather formidable, let us further assume �y = 0. In other words
� is just a function of y ′ and our equation simplifies further to

(wxy ′ + y ′wyy ′ + wwy ′y ′ − wy)� + (wx + 2wwy ′ + y ′wy ′)�y ′ + w2�y ′y ′ = 0.

Plugging in the expressions for partial derivatives of w and equating the coefficients of different
powers of y then leads to the following set of equations:

(ky ′ + λ)y ′�y ′ = λ�

2k�y ′ + (ky ′ + λ)�y ′y ′ = 0.

6
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These equations admit the particular solution �1(y ′) = y ′
(ky ′+λ)

and one finds with S1
1 =

�1 = y ′
(ky ′+λ)

that S1
0 = y. The integrability condition S1

1y = S1
0y ′ is trivially satisfied and the

corresponding first integral is

I 1(x, y, y ′) = y ′ +
1

2
ky2 − λ

k
log(ky ′ + λ).

Note that this first integral is independent of x by construction. For such first integrals, the
method devised by Chandrasekar et al allows us to determine the form of S0 a priori. We
dwell on this aspect in the following section.

3.3. First integrals independent of a particular coordinate

In this subsection, we shall discuss the issue of first integrals independent of a particular
coordinate. This usually leads to a reduction of the order of the equation, as will be explained
below. The general ideas contained here will be illustrated with a specific example of a generic
second-order ODE of the Liénard type.

An interesting feature occurs when the first integral is independent of a particular variable,
say x, i.e., Ix = 0. Then, in general, (3.4) implies

S0 = − 1

y ′ (y
′′S1 + · · · + Sn−2y

(n−1) + Sn−1w),

which enables us to eliminate S0, and causes a reduction in the order of the equations for
determining the integrating factor. For instance in the case of a second-order ODE, we have
S0y

′ + wS1 = 0, leading to S0 = −w
y ′ S1. As a result, one is left with a first-order PDE for

determining S1, namely,

D̃(S1) = −
(

wy ′ − w

y

)
S1. (3.20)

On the other hand, for a third-order equation, we have

S0 = −y ′′S1 + wS2

y ′ .

Elimination of S0 from the system of equations (3.9)–(3.12) with n = 3 then requires us to
solve for S1 and S2 from the coupled system:

D̃[S2] = −(wy ′′S2 + S1)

D̃[S1] = −
((

wy ′ − w

y ′

)
S2 − y ′′

y ′ S1

)
.

This in turn leads to the following second-order equation for the integrating factor S2:

D̃2S2 + D̃(wy ′′S2) − y ′′

y ′ D̃S2 −
{(

wy ′ − w

y ′

)
+

y ′′

y ′ wy ′′

}
S2 = 0. (3.21)

Thus the absence of one ‘coordinate’ in a first integral causes only marginal simplification,
namely a reduction, by one, in the order of the equation to be solved for the integrating factor.
Nevertheless this is extremely useful for second-order equations y ′′ = w(x, y, y ′), since one
is then required to solve a single first-order linear PDE for the integrating factor S1. This fact
was exploited in [7, 8]. Although in general for n � 3, the existence of an x independent first
integral may not always lead to a substantial reduction of computational labor; nevertheless
it is instructive to look into the RS method more carefully, as it has proved to be immensely

7
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successful in determining first integrals of many highly nonlinear oscillator-type systems.
Generally, for equations of the generic form y ′′ = −f1(y)y ′ − f0(y), (3.20) reduces to

D̃S1 = −f0(y)

y ′ S1.

The solution S1
1 of example 2 suggests the ansatz S1 = y ′

h(y,y ′) with the consequence

D̃S1 = D̃(y ′)
h

− y ′

h
D̃h = −f0(y)

h
.

Therefore, the problem now reduces to a determination of the function h(y, y ′) from the
following relation (since D̃(y ′) = w):

y ′D̃(h) = (w + f0)h = −f1(y)y ′h

D̃(h) = −f1(y)h.
(3.22)

The resulting PDE for h is explicitly given by

y ′hy + (−f1y
′ − f0)hy ′ = −f1y

′h.

For f1 = ky and f0 = λy, assuming furthermore that h is independent of y, we obtain
h(y ′) = C(ky ′ + λ). Thus once again we get the solutions, setting constant C = 1,

S1 = y ′

(ky ′ + λ)
and S0 = y,

which satisfy the integrability criterion.
As pointed out in [9], it is often more convenient to modify the ansatz for S1 to S1 = y ′

h(y,y ′)r
to handle more complicated situations.

For generic equations of the form (Liénard type)

y ′′ = −f1(y)y ′ − f0(y)

with this ansatz for S1, (3.22) is modified to

rD̃(h) = −f1(y)h. (3.23)

Assuming h(y, y ′) = A(y) + B(y)y ′ + C(y)y ′2, substitution into (3.23) leads to the following
set of equations for determining the unknown functions A,B,C upon equating coefficients of
different powers of y ′:

Cy = 0, rBy = (2rf0 − f1)C, rAy = (rf0 − f1)B − 2rCf1 and rf0B = f1A.

(3.24)

Suppose

f0(y) = λyξ and f1(y) = μyη,

where λ,μ are parameters and ξ, η are constants. We obtain the following solutions for C,B

and A:

C(y) = γ, rB(y) = μγ
(2r − 1)

η + 1
yη+1 + β

rA(y) = 2λrγ

ξ + 1
yξ+1 + μ(r − 1)

[
(2r − 1)μγ

2r(η + 1)2
y2(η+1) +

β

r(η + 1)
yη+1

]
+ α.

Here α, β and γ are constants of integration. From the last condition in (3.24), i.e., rf 0B =
f1A, it follows, assuming ξ �= η, that α = β = 0 and leads to the following relation:

λr

[
(2r − 1)

(η + 1)
− 2

(ξ + 1)

]
yξ+η+1 = μ2(r − 1)(2r − 1)

2r(η + 1)2
y3η+2. (3.25)

One can then identify two possible cases.
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(a) When r = 1 we have ξ = 2η + 1 and A(y) = λγ

(η+1)
y2(η+1) and B(y) = μγ

(η+1)
y(η+1). The

corresponding integrating factor is

Sa
1 = y ′[

λγ

(η+1)
y2(η+1) + μγ

(η+1)
y(η+1)y ′ + γy ′2] and Sa

0 = μyηy ′ + λy2η+1

y ′ S1.

(b) For r �= 1, assuming the exponents of y in (3.25) to be equal, we find once again
ξ = 2η + 1. Upon equating their coefficients, we obtain a quadratic equation for
the exponent r, occurring in the denominator of the integrating factor, with solution
r = μ2

4λ(η+1)

[
1 ±

√
1 − 4λ

μ2 (η + 1)
]
. Therefore, in this case Sb

1 = y ′
hr where

h(y, y ′) = γ

(η + 1)

[
λ + μ2 (r − 1)(2r − 1)

2r2(η + 1)

]
y2(η+1) +

γμ(2r − 1)

r(η + 1)
yη+1y ′ + γy ′2.

4. Coupled second-order equations

In this section, we consider a system of second-order ODEs to illustrate an application of the
coupled version of the adjoint equation.

Let us consider the system of coupled second-order equations:

ẍ = φ1(x, y) and ÿ = φ2(x, y). (4.1)

As before, consider the following base one forms (dx − ẋ dt), (dy − ẏ dt), (dẋ − φ1 dt),

(dẏ − φ2 dt). Let S1, S2 and R1, R2 be functions such that

S1(dx − ẋ dt) + S2(dy − ẏ dt) + R1(dẋ − φ1 dt) + R2(dẏ − φ2 dt) = dI (t, x, y, ẋ, ẏ) = 0.

(4.2)

Hence

It = −(S1ẋ + S2ẏ + R1φ1 + R2φ2) (4.3)

Ix = S1, Iy = S2, Iẋ = R1, Iẏ = R2. (4.4)

The functions R1, R2 are the integrating factors. Compatibility of the set of (4.3) and (4.4),
namely,

Itx = Ixt , Ity = Iyt , Itẋ = Iẋt , Itẏ = Iẏt

Ixy = Iyx, Ixẋ = Iẋx, Ixẏ = Iẏx, Iyẋ = Iẋy, Iyẏ = Iẏy,
(4.5)

requires that the following hold:

D[R1] = −(S1 + R1φ1ẋ + R2φ2ẋ ) (4.6)

D[R2] = −(S2 + R1φ1ẏ + R2φ2ẏ ) (4.7)

D[S1] = −(R1φ1x + R2φ2x) (4.8)

D[S2] = −(R1φ1y + R2φ2y), (4.9)

where D = ∂t + ẋ∂x + ẏ∂y + φ1∂ẋ + φ2∂ẏ . It is evident that once R1, R2 are known the
remaining S1, S2 can be determined algebraically from (4.6) and (4.7). Since our basic aim
is to determine the integrating factors, we can eliminate, say, S1 by differentiating (4.6) and
using (4.8) to obtain

D2[R1] + D[R1φ1ẋ + R2φ2ẋ] − (R1φ1x + R2φ2x) = 0. (4.10)

9
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Similarly eliminating S2 yields

D2[R2] + D[R1φ1ẏ + R2φ2ẏ] − (R1φ1y + R2φ2y) = 0. (4.11)

Equations (4.10)–(4.11) constitute the coupled version of the adjoint equation (3.1) when
n = 2.

One needs to check, of course, that the solutions of the coupled adjoint equations indeed
satisfy the compatibility conditions (4.5). In general one employs an ansatz for R1, R2 in
order to solve the system of PDEs (4.10)–(4.11). From a knowledge of R1, R2 and S1, S2 it is
straightforward to obtain the first integral from

I =
∫

S1(dx − ẋ dt) + S2(dy − ẏ dt) + R1(dẋ − φ1 dt) + R2(dẏ − φ2 dt). (4.12)

Example 3. Consider the following system of second-order equations:

ẍ +
α

x2
g(u) − λ

x3
= 0

ÿ +
β

x2
f (u) − μ

y3
= 0, u = y

x
.

(4.13)

Here α, β, λ and μ are parameters and f and g are arbitrary functions. Writing these equations
in the form ẍ = φ1(x, y) and ÿ = φ2(x, y), we identify

φ1(x, y) = − α

x2
g(u) +

λ

x3
and φ2(x, y) = − β

x2
f (u) +

μ

y3
.

Note here φ1 and φ2 are velocity independent and for a time-independent first integral It = 0,
we may take D = ẋ∂x + ẏ∂y + φ1∂ẋ + φ2∂ẏ . In that event, with the following ansatz for R1 and
R2, namely,

R1 = a1(x, y)ẋ + a2(x, y)ẏ and R2 = b1(x, y)ẋ + b2(x, y)ẏ, (4.14)

(4.10) and (4.11) yield the following equations:

ẋ3a1xx + ẋ2ẏ(a2xx + 2a1xy) + ẋẏ2(2a2xy + a1yy) + a2yy ẏ
3

+ ẋ{(φ1a1 + φ2a2)x + 2a1xφ1 + (a2x + a1y)φ2}
+ ẏ{(φ1a1 + φ2a2)y + 2a2yφ2 + (a2x + a1y)φ1}

= ẋ(φ1xa1 + φ2xb1) + ẏ(φ1xa2 + φ2xb2), (4.15)

ẋ3b1xx + ẋ2ẏ(b2xx + 2b1xy) + ẋẏ2(2b2xy + b1yy) + b2yy ẏ
3

+ ẋ{(φ1b1 + φ2b2)x + 2b1xφ1 + (b2x + b1y)φ2}
+ ẏ{(φ1b1 + φ2b2)y + 2b2yφ2 + (b2x + b1y)φ1}

= ẋ(φ1ya1 + φ2yb1) + ẏ(φ1ya2 + φ2yb2). (4.16)

Equating coefficients of different powers of the velocities we obtain the following system of
equations:

a1xx = 0, a2xx + 2a1xy = 0, a1yy + 2a2xy = 0, a2yy = 0, (4.17)

(φ1a1 + φ2a2)x + 2a1xφ1 + (a2x + a1y)φ2 = (φ1xa1 + φ2xb1), (4.18)

(φ1a1 + φ2a2)y + 2a2yφ2 + (a2x + a1y)φ1 = (φ1xa2 + φ2xb2) (4.19)

10
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b1xx = 0, b2xx + 2b1xy = 0, b1yy + 2b2xy = 0, a2yy = 0, (4.20)

(φ1b1 + φ2b2)x + 2b1xφ1 + (b2x + b1y)φ2 = (φ1ya1 + φ2yb1), (4.21)

(φ1b1 + φ2b2)y + 2b2yφ2 + (b2x + b1y)φ1 = (φ1ya2 + φ2yb2). (4.22)

Observe that the choice ak = constant and bk = constant (k = 1, 2) satisfies (4.17) and
(4.20), while the remaining equations then simplify to

φ2x(b1 − a2) = 0, φ1y(a2 − b1) = 0

(φ1x − φ2y)a2 − φ1ya1 + φ2xb2 = 0

φ1ya1 + (φ2y − φ1x)b1 − φ2xb2 = 0.

The first two equations imply a2 = b1, which renders the second and the third equations
identical, namely,

(φ1x − φ2y)a2 − φ1ya1 + φ2xb2 = 0.

If equations (4.13) are derivable from a potential then it is necessary that φ1y = φ2x . With this
in mind the above equation can be satisfied by making the choice a2 = b1 = 0 whilst a1 and
b2 are arbitrary. Therefore, the choice a1 = b2 = 1 and a1 = b1 = 0 leads to the following
solution:

R1 = ẋ R2 = ẏ. (4.23)

In this case the solutions of S1 and S2 from (4.6) and (4.7) are found to be

S1 = −φ1 = α

x2
g(u) − λ

x3

S2 = −φ2 = β

x2
f (u) − μ

y3
, u = y

x
.

Using the above values of Ri and Si (i = 1, 2) we obtain from (4.12) the first integral as

I (x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2) +

λ

2x2
+

μ

2y2
+ N(x, y),

where

N(x, y) =
∫

α

x2
g(u) dx +

∫
β

x2
f (u) dy.

On the other hand the condition φ1y = φ2x translates to

αg′(u) + 2βf (u) + βuf ′(u) = 0. (4.24)

Using this condition N(x, y) may be evaluated and we find that

N(x, y) = −β

x

(
α

β
g(u) + uf (u)

)
.

Hence a first integral for the system of second-order equations is

I (x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2) +

λ

2x2
+

μ

2y2
− β

x

(
α

β
g(u) + uf (u)

)
. (4.25)

Let us now look for another solution set of the coupled adjoint equations for R1 and R2.
It is easily verified that

a1(x, y) = y2, a2(x, y) = −xy = b1(x, y) and b2(x, y) = x2 (4.26)

11
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satisfy (4.17) and (4.20) while (4.18) and (4.22) are identically satisfied. The remaining
equations (4.19) and (4.21) become identical and reduce to the following equation:

3(yφ1 − xφ2) = (φ2y − φ1x)xy − φ1yy
2 + φ2xx

2. (4.27)

Substituting the values of φi (i = 1, 2) and their derivatives leads to the following condition
on the functions f and g, namely:

αug(u) − βf (u) = 0, u = y

x
. (4.28)

From (4.26) we derive the following solution for Ri (i = 1, 2):

R1 = −y(xẏ − yẋ) and R2 = x(xẏ − yẋ). (4.29)

The corresponding values of Si (i = 1, 2) are now

S1 = (xẏ − yẋ)ẏ − λ
y2

x3
+ μ

x

y2
and S2 = −(xẏ − yẋ)ẋ + λ

y

x3
− μ

x2

y3
, (4.30)

where use has been made of the condition (4.28). Hence from (4.12) we obtain another first
integral given by

I (x, y, ẋ, ẏ) = 1

2
(yẋ − xẏ)2 +

λ

2

(y

x

)2
+

μ

2

(
x

y

)2

. (4.31)

The two first integrals given by (4.25) and (4.31) will be valid simultaneously provided we can
find functions f and g which satisfy (4.24) and (4.28). It is easily verified that these require
the functions f and g to be given by

g(u) = 1

(1 + u2)3/2
and f (u) = α

β

u

(1 + u2)3/2
,

respectively. Under the circumstances the system of second-order equations reduces to the
following well-known system

ẍ +
αx

(x2 + y2)3/2
− λ

x3
= 0 ÿ +

αy

(x2 + y2)3/2
− μ

y3
= 0,

with the first integrals

I1 = 1

2
(ẋ2 + ẏ2) +

λ

2x2
+

μ

2y2
− α√

x2 + y2

I2 = 1

2
(yẋ − xẏ)2 +

λ

2

(y

x

)2
+

μ

2

(
x

y

)2

.

A more interesting situation from the physical point of view arises when the functions f and g

satisfy condition (4.24) but not condition (4.28). In that event the system of equations (4.13)
admits just one first integral given by (4.25), with f and g satisfying (4.24). In [12] the authors
obtained a system of equations similar in structure to (4.13), in the context of the dynamics of
stellar systems, with

f (u) = 2(1 − ug(u)).

Condition (4.24) then leads to the following differential equation determining g(u):

(1 − 2u2)g′(u) = 2(3ug(u) − 2)

and the first integral assumes the form (setting all the parameters equal to unity)

I (x, y, ẋ, ẏ) = 1

2
(yẋ − xẏ)2 +

1

2x2
+

1

2y2
− 1

x
(2u + (1 − 2u2)g(u)), u = y

x
.

In fact this first integral serves as the Hamiltonian.

12
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5. Outlook

In this paper we have studied the RS-pair method, for determination of first integrals of ODEs,
as proposed by Chandrasekar et al and have shown how their procedure may be brought
within the general ambit of the adjoint equation method. In a similar spirit we have derived
the coupled adjoint equations for analysis of coupled systems of second-order ODEs. Its use
has been illustrated for a system occurring in the context of stellar dynamics. It is obvious
that the procedure can easily be extended to systems of higher order equations. Lastly, it
may be mentioned that one can apply this method to the equations of the Painlevé–Gambier
classification and that this is currently being pursued.
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a b s t r a c t

We employ the generalized Sundman transformation method to obtain certain new first
integrals of autonomous second-order ordinary differential equations belonging to the
Painlevé–Gambier classification scheme. This method not only yields systematically the
known first integrals of a large number of the Painlevé–Gambier equations but also some
time dependent ones, which greatly simplify the computation of their corresponding
solution. In addition we also compute the Sundman symmetries of these equations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of constructing solutions of a given differential equation forms the cornerstone of their analysis. Not
unrelated to this problem is the issue of determining first integrals of the differential equation under consideration. This
is because the existence of a sufficient number of first integrals often enables us to construct a solution by mere elimination
of the derivatives of the dependent variable.

Although there are a number ofwell-definedmethods for the solution of linear ordinary differential equations (ODEs) the
same, however, cannot be said for nonlinear ODEs. It was only through the efforts of Lie towards the end of the nineteenth
century that many ad hoc methods for the solution of nonlinear ODEs were gradually systemized. Besides it is generally
acknowledged that, whenever a differential equation is amenable to a solution, it is because of some sort of underlying
symmetry of the equation [1,2]. Much of Lie’s work was concerned with point transformations of the form

(t, x) �→ (T , X) where T = G(t, x), X = F(t, x)

with the transformation often involving one or more continuous real parameters.
Furthermore towards the very end of the nineteenth century the fact that a given differential equation could be

transformed to a linear equation, that is, it could be linearized came to light [3]. This provided a mechanism to work out
the solutions of many nonlinear differential equations by systematically transforming them to linear equations. In fact Lie

∗ Corresponding author at: Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D-04103, Leipzig, Germany.
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himself [4] solved the linearization problem for second-order ordinary differential equations in the sense that he found
the general form of all second-order ODEs that could be reduced to a linear equation by changing the independent and
dependent variables [4].

Subsequently attempts were made to look beyond point transformations when dealing with second and higher-order
ODEs, with some degree of success. For instance, one may look for nonlocal transformations under which a given ordinary
differential equation is linearizable. This problemwas studied by Duarté et al. [5] and considers transformations of the form

X(T ) = F(t, x), dT = G(t, x)dt. (1.1)

Here F and G are arbitrary smooth functions and it is assumed that the Jacobian J ≡ ∂(T ,X)
∂(t,x) �= 0. If one knows the functional

form of x(t), then the latter transformation ceases to be nonlocal, but knowledge of x(t) is what we are interested in, in
the first place. Consequently (1.1) constitutes a particular type of nonlocal transformation. It must be pointed out that term
nonlocal is very general in nature and it is therefore better to refer to such a transformation as a generalized Sundman
transformation (GST) [6–8], in view of its similarity with the original transformation used in Sundman’s analysis [9]. Other
authors have also used such transformations, but have preferred to call them non point transformations [10,11].

In [5] the authors derived the most general condition under which a second-order ordinary differential equation is
transformable to the linear equation

X ′′(T ) = 0,

(here X ′ = dX
dT ) under a generalized Sundman transformation. Euler and Euler, studied the case of the general anharmonic

oscillator in [7], wherein they investigated the Sundman symmetries of second-order and third-order nonlinear ODEs.
These symmetries, which are in general nonlocal transformations can be calculated systematically and can be used to find
first integrals of the equations. Euler et al. used the generalized Sundman transformation to obtain a relation between a
generalized Emden–Fowler equation and the first Painlevé transcendent [6].

1.1. Result and plan

In this paper we concentrate on generalized Sundman transformations and Sundman symmetries of second-order
ordinary differential equations of the Painlevé–Gambier classification [12,13,18]. We compute new first integrals of some of
the autonomous Painlevé–Gambier equations, which are not mentioned in the classic text by Ince [14]. Themethod used for
this purpose is the generalized Sundman transformation. Barring the six Painlevé equations, it is known that, the remaining
44 equations of this classification scheme admit solutions in terms of known special functions. Therefore knowledge of
additional (time dependent) first integrals is not essential, as far as construction of their solutions is concerned. But the
deduction of time dependent first integrals is interesting from a broader perspective because of the recent interest in non
autonomous ODEs. Secondly, we also compute the associated Sundman symmetries of these equations. It is true that the
first integrals of the Painlevé–Gambier (PG) equations are known from other methods. In this paper we demonstrate that
the first integrals of PG equations can be computed in a simple manner using Sundman’s method. As a bonus we obtain the
Sundman symmetries of these class of equations which are not stated elsewhere.

The organization of the paper is as follows. In Section 2 we introduce the notion of a generalized Sundman
transformation and define the associated Sundman symmetry. Section 3 begins with a discussion of the generalized
Sundman transformation for the Jacobi equation and proceeds to outline the format for its explicit evaluation. It then
examines, as a special case of the Jacobi equation, particular equations of the Painlevé–Gambier classification, notably the
equations numbered 11, 17, 37, 41 and 43 of Ince’s book, from the viewpoints of the generalized Sundman transformation,
the associated Sundman symmetry including also their solution. In Section 4, four more equations of the Painlevé–Gambier
classification (namely the equations numbered 18, 19, 21 and 22) which also arise as special cases of the Jacobi equation are
analyzed and their parametric solutions are constructed by exploiting the Sundman transformation.

2. Generalized Sundman transformation and symmetry

Consider an nth-order ordinary differential equation given by

x(n) = w(t, x, ẋ, ẍ, . . . , x(n−1)) (2.1)

where x = x(t) and x(k) = dkx/dtk. Such an ODE may always be written as a system of first-order ODEs

ẋi = wi(x) i = 1, . . . , n.

By a first integral we mean the following.

Definition 2.1. Let I(x, t) be a C1 function on an open set U ∈ R
n. Then I(x, t) is a first integral of the vector field w · ∂x

corresponding to the system of ODEs ẋ = w(x) if and only if it is constant along any solution of the equation.

Thismeans that given a time interval T , I(x(t), t) is independent of t for all t ∈ T . Formallywe define a generalized Sundman
transformation for (2.1) as follows.
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Definition 2.2 (Sundman Transformation). A coordinate transformation of the form

X(T ) = F(t, x), dT = G(t, x)dt,
∂F
∂x
�= 0, G �= 0 (2.2)

is said to be a generalized Sundman transformation of Eq. (2.1) if differentiable functions F and G are determined such that
(2.1) is transformed to the autonomous equation

X (n) = w0(X, X ′, . . . , X (n−1)), (2.3)

where X ′ = dX/dT etc.

This notion of generalized Sundman transformation, as a kind of nonlocal extension of invertible point transformation was
made by Duarte et al. Its nonlocal character is apparent from the fact that T = ∫

G(t, x(t)) dt . If (2.3) happens to be a linear
ordinary differential equation, then we say that the original ordinary differential equation, (2.1), is linearizable. In the event
w0 = 0 one says that (2.1) has been mapped to the free particle equation.

Closely related to the concept of a generalized Sundman transformation is the notion of an associated Sundman
symmetry. This is similar in spirit to the existence of a Lie symmetry under point transformations.
Suppose that we have a generalized Sundman transformation (GST)

X(T ) = F(t̃, x̃), dT = G(t̃, x̃)dt̃
which maps the equation

x̃(n) = w(t̃, x̃, ˙̃x, . . . , x̃(n−1)) �−→ X (n) = w0(X, X ′, . . . , X (n−1)).

If there exists a transformation of the differentiable functions F(t̃, x̃) and G(t̃, x̃), considered as functions of F(t, x) and
G(t, x), such that our original differential equation (2.1) remains invariant under the transformation, then the transformation
defines a Sundman symmetry. Formally it may be defined as follows.

Definition 2.3 (Sundman Symmetry). A Sundman symmetry [7] for Eq. (2.1) is a transformation of the form

F(t̃, x̃) = M(F(t, x),G(x, t)), G(t̃, x̃)dt̃ = N(F(t, x),G(t, x))dt, (2.4)

whereM and N are some differentiable functions such that the transformation keeps (2.1) invariant. In other words (2.1) is
transformed to

x̃(n) = w(t; x̃, ˙̃x, ¨̃x, . . . , x̃(n−1)). (2.5)

If M(F ,G) = F and N(F ,G) = G, then of course, the symmetry is trivial. The set of conditions on the differentiable
functions F and Gwhen the differential equation (2.1) is mapped to the autonomous differential equation (2.3) are referred
to as the Sundman determining equations. This is illustrated below.

A Sundman symmetry (2.4) is obtained by choosing M and N in such a way that the Sundman determining equations
remain invariant. If

X = F(t̃, x̃), dT = G(t̃, x̃)dt̃
transforms (2.5) to (2.3) and

X = M(F(t, x),G(t, x)), dT = N(F(t, x),G(t, x))dt
also transforms (2.1) to (2.3), then the composition of these two GSTs leads to the Sundman symmetry (2.4) for (2.1).

3. GST and Sundman symmetry for Jacobi’s equation

We begin this section by considering the well-known Jacobi equation since many of the second-order equations of the
Painlevé–Gambier classification may then be regarded as special cases of this rather general equation. The Jacobi equation
is given by [15,16]

ẍ+ 1
2
φxẋ2 + φt ẋ+ B(t, x) = 0, (3.1)

and may be transformed to X ′′ = 0 under the transformation (2.4) when its coefficients satisfy the following Sundman
determining equations:

1
2
φx(F ,G; t, x) = Fxx

Fx
− Gx

G
(3.2)

φt(F ,G; t, x) = 2Fxt
Fx
− Ft

Fx

Gx

G
− Gt

G
(3.3)

B(F ,G; t, x) = Ftt
Fx
− Gt

G
Ft
Fx
. (3.4)
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Further it admits a Sundman symmetry of the form (2.4) if and only ifM and N are given by

M(F ,G) = M(F(t, x)) and N(F ,G) = G(t, x)ψ(F). (3.5)

The Sundman symmetry of (3.1) is of the form

F(x̃, t̃) = M(F(x, t)), (3.6)

G(t̃, x̃) = G(t, x)
dM(F(t, x))

dF
dt (3.7)

with no further condition on the differentiable functionM .
This follows from the following observation. Suppose for the sake of notational convenience we denote

F(t̃, x̃) = F̂ and G(t̃, x̃) = Ĝ.

The invariance of the Sundman determining equations requires each expression occurring in (3.2)–(3.4) to be invariant.
From (3.4) we observe, making use of (3.5)

F̂tt
F̂x
− Ĝt

Ĝ

F̂t
F̂x
= Ftt

Fx
− Gt

G
Ft
Fx
+

(
M ′′(F)
M ′(F)

− ψ ′(F)
ψ(F)

)
F 2
t

Fx
.

The left hand side is clearly an invariant, provided(
M ′′(F)
M ′(F)

− ψ ′(F)
ψ(F)

)
= 0 (3.8)

which in turn implies

ψ(F) = dM
dF
, (3.9)

where we have chosen the integration constant to be unity. It may be verified that (3.2) and (3.3) are also invariant under
(3.5) provided condition (3.9) holds, i.e.,

F̂xx
F̂x
− Ĝx

Ĝ
= Fxx

Fx
− Gx

G
,

2F̂xt
F̂x
− F̂t

F̂x

Ĝx

Ĝ
− Ĝt

Ĝ
= 2Fxt

Fx
− Ft

Fx

Gx

G
− Gt

G
.

3.1. Case I: When φt = 0 and B(x, t) = 0

In this subsection we examine the following special case of the Jacobi equation

ẍ+ 1
2
φxẋ2 = 0,

and explicitly derive the forms of the functions F and G. We present this method algorithmically.
Step I:Writing G in term of F

Since B(t, x) = 0, from (3.4) we can set

G = a(x)Ft , (3.10)

where a is an arbitrary function of x.
Step II: Expressing F and its derivatives in terms of coefficients

Again, since φt = 0, from (3.3) and using (3.10) we have

Fxt
Fx
− ax(x)

a(x)
Ft
Fx
− Ftt

Ft
= 0

i.e.,

∂

∂t

(
Fx
Ft

)
= ax(x)

a(x)
.

Integrating this with respect to t we have

Fx
Ft
= ax

a
t + b(x), (3.11)
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where b is an arbitrary function of x. Finally from (3.2) we get

Fx
G
= c(t)e

φ
2 = c(t)K(x), (3.12)

where c is an arbitrary function of t and

eφ/2 = K(x). (3.13)

Since φt = 0, the r.h.s. is independent of t .
Step III: Equations and solutions of coefficients

Using (3.10) and (3.11) one can show that (3.12) can be reduced to

ax
a2

t + b(x)
a
= c(t)K(x). (3.14)

There are two possibilities (a) c(t) = c0 (constant), in this case a is also constant; (b) c(t) = t . The second case is more
interesting. Equation of the coefficient of t from (3.14) leads to

ax
a2
= K(x), (3.15)

which implies

a(x) = − 1
K1(x)+ f

(3.16)

where

K1(x) =
∫

K(x)dx (3.17)

and f is an arbitrary constant. Assuming f = 0 one finds

a(x) = − 1
K1(x)

. (3.18)

Step IV: Finding F and G using solutions of coefficients
Using (3.18) in (3.11) and with b(x) = 0 we find that

Fx
Ft
= − K(x)

K1(x)
t

or

K1(x)
K(x)

Fx + tFt = 0. (3.19)

By using the method of characteristics we obtain the general solution of F(t, x) in the form

F(t, x) = J
(
K1(x)
t

)
, (3.20)

where J(λ) is any arbitrary function of the characteristic coordinate λ = K1(x)/t . Hence from (3.10) using (3.18) and F as
given by (3.20) we easily find that

G(t, x) = 1
t2

J ′(λ). (3.21)

It is interesting to note that, when J(λ) = λ, the nonlocal character of the transformation vanishes for we have

X = F(t, x) = K1(x)
t

and G(t, x) = 1
t2

so that dT = 1
t2

dt leading to T = −1
t
. (3.22)

Step V: Finding first integrals from F and G
As the standard first integrals of the linear ODE X ′′ = 0 are

I1 = X ′ = dX
dT

and I2 = X − TX ′

respectively, we obtain as a result of the GST these in the following form:

I1 = Fx
G
ẋ+ Ft

G
= tK(x)ẋ− K1(x) (3.23)



Author's personal copy

3252 P. Guha et al. / Nonlinear Analysis 72 (2010) 3247–3257

and

I2 = X − TX ′ = F(t, x)− (tK(x)ẋ− K1(x))
∫

G(t, x)dt. (3.24)

In particular, when F and G are given by (3.22), I2 assumes the following simple form

I2 = ẋK(x). (3.25)

It is important to note that in the following examples we repeatedly use this expression in order to compare the results of
our calculations with the known time independent first integrals given in Ince’s book [14].
Secondly, in view of the fact that we have at our disposal two first integrals, it is a straightforward matter to obtain the
general solution by eliminating ẋ from these expression.

3.1.1. Examples from the Painlevé–Gambier class of equations
Apart from the six Painlevé equations, the remaining 44 second-order ODEs of the Painlevé–Gambier classification

scheme possess solutions that can be expressed in terms of elementary functions [17]. These solutions fall into two classes—
(a) solutions which are rational in the independent variable and (b) solutions which are expressed in terms of the classical
special functions. Since the latter are the solutions of linear equations, this second kind of solutions is referred to as the
‘linearizable’ case, obviously these exist only for special values of the parameters.

In this subsection we focus on some of these equations. In particular, using the generalized Sundman transformations
we obtain certain new first integrals for the equations 11, 17, 37, 41 and 43 of the Painlevé–Gambier classification, as given
in Ince’s classic text [14]. The results are presented below.

Example 1 (Painlevé–Gambier Equation XI). The first system we examine is equation number 11 in the Painlevé–Gambier
classification:

ẍ− 1
x
ẋ2 = 0. (3.26)

Comparison with the Jacobi equation (3.1) reveals that

1
2
φx = −1

x
. (3.27)

Hence from (3.13) we have

K(x) = e
φ
2 = 1

x
(3.28)

and from (3.17)

K1(x) = ln x. (3.29)

Therefore making use of (3.22) we have

F =
(
ln x
t

)2

and G(t, x) = 2 ln x
t3

(3.30)

while from (3.23) and (3.24) the first integrals for this equation are

I1 = t
x
ẋ− ln x (3.31)

and

I2 = ẋ
x
. (3.32)

Notice that whereas the time independent first integral I2 is mentioned in [14] the remaining first integral I1 is time
dependent and is not stated therein. This is a trivial example in the sense that one could have deduced these results even
otherwise. Moreover G(t, x) being a function of t only actually produces a point transformation. But the Sundman symmetry
of this simple example is quite interesting.
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Table 1
Summary of results of Sundman transformations and symmetries.

Painlevé–Gambier equation no. Sundman transformation Sundman symmetry

XI. ẍ− 1
x ẋ

2 = 0 F(x, t) = ( log x
t

)2
t̃ = −

[
c + ∫ log x

t3
√
M(F)

dM(F)
dF dt

]−1

G(x, t) = 2 ln x
t3

x̃ = exp

(
−

√
M(F)

c+∫ log x
t3
√
M(F)

dM(F)
dF dt

)

XVII. ẍ− m−1
mx ẋ2 = 0 F(x, t) =

(
mx1/m

t

)2
t̃ = c −

[
m

∫ x1/m

t3
√
M

dM
dF dt

]−1

G(x, t) = 2mx1/m

t3
x̃ =

(
t̃
√
M(F)
m

)m

XXXVII. ẍ− { 1
2x + 1

x−1

}
ẋ2 = 0 F(x, t) =

(
1
t log x1/2−1

x1/2+1

)2
t̃ = c−

[∫
log

(
x1/2−1
x1/2+1

)
1√
M

dM
dF dt

]−1

G(x, t) = 2
t3

log x1/2−1
x1/2+1

x̃ =
(

1+et̃
√
M(F)

1−et̃
√
M(F)

)2

XLI. ẍ− 2
3

{ 1
x + 1

x−1

}
ẋ2 = 0 F(x, t) = K2

1 (x)
t2

G(x, t) = 2K1(x)
t3

K1(x) = −3(−x)1/32F1(1/3, 2/3; 4/3; x)
XLIII. ẍ− 3

4

{ 1
x + 1

x−1

}
ẋ2 = 0 F(x, t) = K2

1 (x)
t2

G(x, t) = 2K1(x)
t3

K1(x) = −4(−x)1/4 2F1(3/4, 1/4; 5/4; x)

3.1.2. The Sundman symmetry for ẍ− 1
x ẋ

2 = 0
Todeduce the Sundman symmetry for this equation, it is convenient to assume that J(λ) = λ2 in the rest of this subsection

so that from (3.20) we have

F(t, x) =
(
K1(x)
t

)2

=
(
ln x
t

)2

. (3.33)

Now the Sundman symmetry of (3.26) being of the form (3.6), we assume that

F̂ = F(t̃, x̃) = M(F(t, x)).

Consequently with F given as in (3.33) one finds that

x̃ = exp
(
t̃
√
M(F)

)
. (3.34)

On the other hand from (3.7), using (3.21) to calculate Gwhich now is given by G(t, x) = 2 ln x/t3, we have

Ĝdt̃ = G
dM(F)
dF

dt ⇒ ln x̃
t̃3

dt̃ = ln x
t3

dM
dF

dt.

Upon using (3.34) to eliminate x̃ from the l.h.s of the above expression, we obtain the following transformation for the time
variable:

t̃ = −
[
c +

∫
ln x

t3
√
M(F)

dM(F)
dF

dt
]−1

. (3.35)

Here c is a constant of integration. Substituting this expression into (3.34) we get the transformation for the spatial variable,
viz

x̃ = exp

(
−

√
M(F)

c + ∫ ln x
t3
√
M(F)

dM(F)
dF dt

)
. (3.36)

Here M(F) is an arbitrary function of F and c is a constant of integration. Eqs. (3.35) and (3.36) constitute a Sundman
symmetry for the Painlevé–Gambier XI equation.

The above procedure for finding Sundman symmetries may easily be applied to some of the other equations of the
Painlevé–Gambier classification. The results for this and some of the other equations of the Painlevé–Gambier classification
are summarized in Table 1.
In the above table 2F1(a, b, c; x) is the hypergeometric series which converges for −1 < x < 1. For Eqs. 41 and 43 it is
difficult to obtain explicit expressions for the corresponding symmetries and we do not display them here.
In Table 2 we summarize the results for the time independent and time dependent first integrals of the above equations.
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Table 2
Summary of first integrals.

Painlevé–Gambier equation no. Time dependent F.I Time independent F.I

XVII. ẍ− m−1
mx ẋ2 = 0 tx

1−m
m ẋ−mx

1
m x

1−m
m ẋ

XXXVII. ẍ− ( 1
2x + 1

x−1

)
ẋ2 = 0 t

x1/2(x−1)
ẋ− log x1/2−1

x1/2+1
− 1

x1/2(x−1)
ẋ

XLI. ẍ− 2
3

( 1
x + 1

x−1

)
ẋ2 = 0 tẋ

x
2
3 (x−1)

2
3
+ 3(−x)1/3 2F1(1/3, 2/3; 4/3; x) ẋ

x2/3(x−1)2/3

XLIII. ẍ− 3
4

( 1
x + 1

x−1

)
ẋ2 = 0 tẋ

x
3
4 (x−1)

3
4
+ 4(−x)1/4 2F1(3/4, 1/4; 5/4; x) ẋ

x3/4(x−1)3/4

3.2. Case B: When φt = 0 = Bt

The prototype equation for this section has the generic form

ẍ+ 1
2
φxẋ2 + B(x) = 0. (3.37)

Once again there are a number of equations of the Painlevé–Gambier classification which belong to this category.

3.2.1. Generalized Sundman transformation
For such equations our first objective is to construct a generalized Sundman transformation (2.2) (GST) such that (3.37)

is mapped to the following equation

X ′′ + a0(X) = 0, (3.38)

where X ′ = dX/dT . The exact form of a0(X) is specified below. This is true if the following conditions (i.e. the Sundman
determining equations) on the coefficients of (3.37) hold good:

1
2
φx = Fxx

Fx
− Gx

G
(3.39)

0 = 2
Fxt
Fx
− Gx

G
Ft
Fx
− Gt

G
(3.40)

B(x) = Ftt
Fx
− Gt

G
Ft
Fx
+ a0(F)

G2

Fx
. (3.41)

From (3.39) we have

ln Fx − lnG =
∫

1
2
φxdx− ln b(t).

Here b(t) is an arbitrary constant of integration. It follows that

G(t, x) = b(t)e−φ/2Fx. (3.42)

Substituting G from (3.42) to (3.41) we have

Ftt
Fx
− FxtFt

F 2
x
−

˙b(t)
b(t)

Ft
Fx
+ a0(F)b(t)2e−φFx = B(x). (3.43)

If we set b(t) = β , i.e., a constant independent of t and assume that

∂

∂t

(
Ft
Fx

)
= 0, (3.44)

then (3.43) implies

a0(F)β2e−φFx = B(x). (3.45)

Instead of trying to determine the form of F first, it is more convenient to stipulate a0(F) and see whether we can satisfy the
remaining equations with such a choice of a0(F). To this end we suppose

a0(F) = ±F . (3.46)

Then (3.45) yields

F 2 = ± 2
β2

∫
B(x)eφdx. (3.47)
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Thus F is a function of x only and as a result it is obvious that (3.44) is trivially satisfied. It remains to verify whether such
an expression for F is consistent with (3.40). Since b(t) = β is a constant, we have from (3.42),

G(t, x) = βe−φ/2Fx = B(x)eφ/2(±2
∫
B(x)eφdx

)1/2 , (3.48)

which is clearly independent of t and hence Gt = 0. Consequently, since F and G are only functions of x, it follows that (3.40)
is clearly satisfied. In summary we therefore have the following form of the GSTmapping (3.37) to the equation X ′′ ±X = 0,
viz

X = F(x) =
(
± 2
β2

∫
B(x)eφ(x)dx

)1/2

, dT = B(x)eφ/2(±2
∫
B(x)eφdx

)1/2 dt. (3.49)

The latter is obviously a nonlocal transformation.

3.2.2. The Sundman symmetry
The Sundman symmetry associated with (3.37) is not difficult to deduce. As above, for notational convenience we denote

F̂ = F(t̃, x̃) and Ĝ = G(t̃, x̃).

To ensure invariance of the Sundman determining equations, namely (3.39)–(3.41), we assume that

F̂ = M(F) and Ĝ = G(t, x)ψ(F). (3.50)

The functional forms of M and ψ are determined by demanding invariance of the Sundman determining equations.
Invariance of (3.39) leads to

ψ(F) = K
dM(F)
dF

,

where K is a constant of integration, which may be set to unity, so that

ψ(F) = M ′(F). (3.51)

Invariance of (3.41) then leads to the equation

dM
dF

= a0(F)
a0(M)

whence it follows, with a0(F) = ±F , that

M = ±
√
F 2 + c, (3.52)

where c is a constant of integration. Note that, if c = 0, then we get a trivial symmetry. The functional form ofψ is therefore
given by

ψ(F) = ± F√
F 2 + c

. (3.53)

With M and ψ given by (3.52) and (3.53) respectively, one can easily verify that the final Sundman determining equation,
namely (3.40), is identically satisfied. Thus in summary we have the following Sundman symmetry for (3.37)

F(t̃, x̃) = ±
√
F 2(t, x)+ c and G(t̃, x̃)dt̃ = ±G(t, x)

F√
F 2 + c

dt. (3.54)

In the following we consider only the case in which the GST maps equations of the Painlevé–Gambier classification
belonging to the class of (3.37) to a harmonic oscillator equation

X ′′ + X = 0. (3.55)

Note that a first integral for (3.55) is obviously

X ′2 + X2 = I1. (3.56)

Example (Painlevé–Gambier Equation XXI).

ẍ− 3
4x

ẋ2 − 3x2 = 0. (3.57)
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Table 3
Summary of Sundman symmetry.

Painlevé–Gambier equation Sundman symmetry

x̃ = 1
2i

√
cβ2 − 4x2

XVIII. ẍ− 1
2x ẋ

2 − 4x2 = 0 t̃ = A+ ∫
(2ix)3/2

(cβ2−4x2)3/4
dt

x̃ = ( 1
2i

)4/3
(cβ2 − 4x3/2)2/3

XXI. ẍ− 3
4x ẋ

2 − 3x2 = 0 t̃ = A+ ∫
(2i)5/3x5/4

(cβ2−4x3/2)5/6
dt

x̃ = 16
(cβ2−4x−1/2)2

XXII. ẍ− 3
4x ẋ

2 + 1 = 0 t̃ = A+ ∫ 8ix−3/4

(cβ2−4x−1/2)3/2
dt

x̃ = −1+
√

4x2+4x+1−cβ2

2

XIX. ẍ− 1
2x ẋ

2 − (4x2 + 2x) = 0 t̃ = A+∫ √
2x(2x+1)√

4x2+4x+1−cβ2
√√

4x2+4x+1−cβ2−1
dt

Here 1
2φx = − 3

4x implying φ = ln x−3/2 and B(x) = −3x2. As a result from (3.49) taking the positive square root we find

F(x) = 2i
β
x

3
4 and it turns out that G = 3i

2

√
x. Hence the Sundman transformation has the explicit form

X = F(x) = 2i
β
x

3
4 , dT = 3i

2

√
x dt. (3.58)

When the first integral (3.56) is evaluated in terms of the preceding transformation, it reproduces the result in [14].

Table 3 contains a summary of the Sundman symmetry for some of the Painlevé–Gambier equations falling under Case B.

4. Parametric solutions

As remarked earlier, when we have two first integrals for a second-order ODE, then its general solution may be obtained
simply by eliminating the first derivatives from the two first integrals. However, the problem of finding a sufficient number
of first integrals is itself a non trivial exercise. In most instances, one is lucky if there exists even a single first integral. In
such cases a parametric solution of the ODE can often be constructed by integrating the first integral in terms of a parameter.
Using Euler et al. [7,8] scheme we present parametric solutions of some Painlevé–Gambier equations.
Consider a first-order equation of the form

F
(
x(t),

dx
dt

)
= 0. (4.1)

Let x(t) = f (τ ), dx
dt = g(τ ) and τ = τ(t) where f and g satisfy the relation F(f (τ ), g(τ )) = 0 with τ being a parameter.

Since dx
dt = df

dτ
dτ
dt so g(τ ) = df

dτ
dτ
dt , i.e.,∫

dt =
∫

df
dτ

1
g(τ )

dτ + C, (4.2)

where C is an integrating constant. The general solution (parametric) of (4.1) is then given by

x(τ ) = f (τ ), (4.3)

t(τ ) =
∫

df
dτ

1
g(τ )

dτ + C, (4.4)

F(f (τ ), g(τ )) = 0. (4.5)

Using this method we can integrate (3.56) with respect to the parameter τ to obtain the general solution of (3.55) in the
form

X(τ ) =
√
I1 − τ 2 (4.6)

T (τ ) = C1 − arcsin
(
τ√
I1

)
, (4.7)

with I1 and C1 being the arbitrary constants of integration.
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Table 4
Summary of parametric solutions.

Painlevé–Gambier equation no. Sundman transformation Parametric solution

F(x, t) = 2i
β
(x2 + x)1/2 x(τ ) = 1

2

(
−1+√

β2τ 2 + 1− β2I1
)

XIX. ẍ− 1
2x ẋ

2 − (4x2 + 2x) = 0 dT = βx1/2(2x+1)

2
√

x2+x
dt t(τ ) = β√

2

∫ dτ(
(β2τ2+1−β2 I1)

√
β2τ2+1−β2 I1−1

)1/2 +C2

F(x, t) = 2i
β
x x(τ ) = β

2i

√
I1 − τ 2

XVIII. ẍ− 1
2x ẋ

2 − 4x2 = 0 dT = 2i
√
xdt t(τ ) = − 1√

2iβ

∫ dτ
(I1−τ2)3/4 + C2

F(x, t) = 2i
β
x−1/4 x(τ ) = 16

β4
1√

I1−τ2

XXII. ẍ− 3
4x ẋ

2 + 1 = 0 dT = − i
2 x
−1/2dt t(τ ) = c2 + 8i

β

∫ dτ
(I1−τ2)3/2

The general solution of (3.57) is then obtained by using the transformation (3.58) together with the parametric solutions
(4.6) and (4.7) and is given by

x(τ ) =
(
β

2i

)4/3

(I1 − τ 2)2/3, (4.8)

t(τ ) = − 4
3β

(
β

2i

)1/3 ∫
dτ

(I1 − τ 2)5/6 + C2 (4.9)

where I1 and C2 are arbitrary constants.
In Table 4 we present the parametric solutions for some of the other equations of the Painlevé–Gambier classification
scheme, obtained by using the above method.

5. Conclusion

In this paper we have computed the first integrals of the Painlevé–Gambier class of equations using Sundman
transformation. It turns out that the Sundman method simplifies our job and also yields the Sundman symmetries of these
equations. The calculation of the Sundman symmetries, appears to be new to the existing literature on the Painlevé–Gambier
equations. Hence it would be interesting and tempting to apply this scheme to compute the first integrals of the Chazy
systems and their corresponding (Sundman) symmetries.
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a b s t r a c t

We exploit the notion of nonholonomic transformations to deduce a time-dependent first
integral for a (generalized) second-order nonautonomous Riccati differential equation. It is
further shown that the method can also be used to compute the first integrals of a partic-
ular class of third-order time-dependent ordinary differential equations and is therefore
quite robust.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The time-independent second-order Riccati equation (SORE) plays an important role in dynamical systems. It is also
sometimes called the Painlevé–Ince equation. The SORE was studied in [6] from a geometric perspective and shown to admit
two alternative Lagrangian formulations, with both Lagrangians belonging to a nonnatural class (neither potential nor ki-
netic term). The Lie point symmetries of the SORE are known to have an algebra identical to that of the eight-parameter
group SL (3,R) [20]. Since the free particle also possesses a similar symmetry algebra, it is not surprising that under an appro-
priate transformation, the SORE may be transformed into that of the free particle.

The aim of the present work is to study a time-dependent generalization of the second-order Riccati equation, namely

€xþ 3kx _xþ k2x3 ¼ 0: ð1:1Þ
In [5] the authors have studied the second-, third- and fourth-order cases of the hierarchy of Riccati equations and have
shown the existence of Darboux functions and generators of t-dependent constants of motion.

The time-dependent second-order Riccati equation (TDSORE) is given by

€xþ 3hðtÞx _xþ h2x3 þ _hðtÞx2 ¼ 0: ð1:2Þ
This is an interesting equation which differs from the SORE in many respects. For instance, unlike the SORE its time-depen-
dent counterpart is not a bi-Lagrangian system. Furthermore it turns out that this equation is actually a truncated version of
the Gambier equation [10]. Indeed exactly a hundred years ago Gambier in course of his classification of integrable second-
order differential equations solved the following equation, which is listed as Equation number XXVII of the Painlevé–
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Gambier series in Ince’s book [15] and occurs as Eq. 15 in Gambier’s minimal list of 24 s-order equations with the Painlevé
property. The Gambier equation (see [13] for a relatively recent update) is given by

€x ¼ n� 1
n

_x2

x
þ a

nþ 2
n

x _xþ b _x� n� 2
n

_x
x
r� a2

n
x3 þ ð _a� abÞx2 þ ðcn� 2a

n
rÞx� br� r2

nx
; ð1:3Þ

where a, b and c are functions of the independent variable, r is a constant which can be scaled to 1 unless it happens to be 0
and n is an integer. If we set b = c = 0 and assume that n = 1 and r = 0, then (G.1) reduces to a time-dependent second-order
Riccati equation which can be mapped to (G14) of the minimal list of Gambier.

It is also interesting to note that the TDSORE also arises in the context of Calogero–Leyvraz’s construction of isochronous
dynamical systems [11]. Indeed such systems are not as rare as previously thought. Furthermore it is in fact possible to con-
struct isochronous Hamiltonian systems for the many-particle case with a translation invariant potential by making a novel
use of suitable canonical variables [1,2].

The TDSORE arises from a Riccati sequence which may be introduced as follows. Let h(t) be an arbitrary differentiable
function and DR denote the following differential operator

DR :¼ d
dt

þ hðtÞx;

which will be called the ‘Riccati differential operator’. Now consider the sequence obtained by applying such a differential
operator to the function x in an iterative way. For example when

n ¼ 1; DRx ¼ d
dt

þ hðtÞx
� �

x ¼ _xþ hðtÞx2;

n ¼ 2; D2
Rx ¼ d

dt
þ hðtÞx

� �2

x ¼ €xþ 3hðtÞx _xþ h2ðtÞx3 þ _hðtÞx2;

n ¼ 3; D3
Rx ¼ d

dt
þ hðtÞx

� �3

x ¼ x
��� þ4hðtÞx€xþ 6h2ðtÞx2 _xþ 3hðtÞ _x2 þ h3ðtÞx4 þ 5 _hðtÞx _xþ 3hðtÞ _hðtÞx3 þ €hðtÞx2;

ð1:4Þ

and analogous expressions for higher values of n which turn out to be quite lengthy.
The equation RðkÞðx; . . . ; xðkÞÞ ¼ Dk

Rx ¼ 0; k ¼ 0;1; . . . defines a Riccati equation with variable coefficients of order k. Note
that R(0)(x) = x, and the particular Riccati equation Rð1Þðx; _xÞ ¼ 0 obtained for k = 1 is the standard Riccati equation but with
a variable coefficient h(t),

_xþ hðtÞx2 ¼ 0: ð1:5Þ
The time-dependent second-order Riccati equation actually belongs to the class of equations of Liénard type but with time-
dependent coefficients namely,

€xþ f ðx; tÞ _xþ gðx; tÞ ¼ 0: ð1:6Þ
Recently Gladwin Pradeep et al. [12] studied a system of N-coupled Liénard-type nonlinear oscillators which is completely
integrable and possesses N time-independent and N time-dependent explicit integrals. There are various methods applied to
study first integrals of time-dependent systems, for example, Sarlet [22] used a direct ad hoc procedure for the construction
of first integrals for one-dimensional particle motion in a non-linear, time-dependent potential field. In general method var-
ies from problem to problem.

1.1. Motivation, result and plan

The canonical list of second-order equations with the Painlevé property is still an unsettled question and as such any new
development in this area is always interesting. The objective of this paper is to study the first integrals of the time-dependent
higher-order equations of Riccati type. We will firstly be concerned with Eq. (1.2) and derive a first integral for it. Thereafter
we consider a generalization of the time-dependent Riccati equation and examine its relation with the Sugai equation. It is
shown how nonholonomic transformations [16–19] provide us with an effective tool for the determination of a first integral
in several particular cases. Finally we consider applications of the method to third-order ODEs, which mimic in a sense Eq.
(1.6) above.

In [4,20] the authors, by considering a nonlocal transformation, have derived certain nonlinear ODEs from well-known
simple linear ODEs such as the linear harmonic oscillator and its damped counterpart. While the TDSORE can be shown
to belong to a category of equations derived by them, its formal solution as presented by the authors still retains a nonlocal
character. Our motivation is not to derive classes of nonlinear ODEs from linear ODEs using a nonlocal transformation; rather
it is to linearize a given nonlinear ODE by means of a nonlocal differential transformation and to obtain an explicit expression
for the first integral, when the latter exists.

The organization of the paper is as follows. In Section 2 we introduce the nonholonomic transformation method and use it
to compute the first integrals of the time dependent second-order Riccati equation. In Section 3 we apply such a
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transformation to compute first integrals of a class of third-order ODEs. We illustrate the method with several examples and
complete the paper with a modest outlook.

2. Nonholonomic transformations and first integrals of time dependent second-order Riccati equation

Of late it has been found that Sundman transformations are often quite useful for the determination of first integrals of
second- and higher-order ordinary differential equations (ODEs), [8,9,7]. On the other hand for nonholonomic transforma-
tions, which may be regarded as the generalization of Sundman transformations [24], one assumes that both the new vari-
ables X and T are given by nonlocal transformations. In this sense they are the complete opposite of point transformations.
Given a second-order ordinary differential equation

€x ¼ wðt; x; _xÞ; ð2:1Þ
where wðt; x; _xÞ is linear in _x, suppose we seek a nonlocal transformation of (t,x)´ (T,X) of the form

dX ¼ Aðx; tÞdxþ Bðx; tÞdt; ð2:2Þ

dT ¼ Cðx; tÞdxþ Dðx; tÞdt ð2:3Þ
such that the ODE (2.1) is transformed to the autonomous linear equation [21]

d2X

dT2 ¼ 0: ð2:4Þ

Our first objective is therefore to determine the differentiable functions A, B, C and D which enable such a linearization to be
made for the particular case of (1.2). The nonholonomic nature of the above transformation may be ensured by demanding
that

At – Bx; Ct – Dx: ð2:5Þ
It is obvious that, if such a transformation exists, then in terms of the new variables we immediately obtain a first integral
given by

dX
dT

¼ constant: ð2:6Þ

However, from (2.6) it follows that such a first integral is clearly a time-dependent one when expressed in terms of the
original variables, x and t, because

Iðt; x; _xÞ ¼ Aðx; tÞ _xþ Bðx; tÞ
Cðx; tÞ _xþ Dðx; tÞ ð2:7Þ

clearly defines a time-dependent first integral of (1.6).
The crucial question is whether one can derive a nonholonomic transformation which enables such a first integral to be

identified for a given second-order equation. In answer to this question we note that, if (2.7) is indeed a first integral of (1.6),
then we must have dI/dt = 0. This in turn leads to the following condition:

Dðx; tÞ€xþ ðCAx � ACxÞ _x3 þ ðCðAt þ BxÞ � AðCt þ DxÞ þ DAx � BCxÞ _x2 þ ðCBt � BCt þ DAt � ADt þ DBx � BDxÞ _x
þ ðDBt � BDtÞ ¼ 0; ð2:8Þ

where

Dðx; tÞ ¼ Aðx; tÞDðx; tÞ � Bðx; tÞCðx; tÞ:
Comparison with (1.6) shows that firstly we must have

CAx ¼ ACx; implying Cðx; tÞ ¼ aðtÞAðx; tÞ; ð2:9Þ
since there is no term proportional to _x3 while the vanishing of the coefficient of _x2 implies

CðAt þ BxÞ � AðCt þ DxÞ þ DAx � BCx ¼ 0: ð2:10Þ
In view of (2.9) we rewrite D(x, t) as

Dðx; tÞ ¼ Aðx; tÞðDðx; tÞ � aðtÞBðx; tÞÞ:
We now make a simplifying assumption, viz,

Dðx; tÞ :¼ aðtÞBðx; tÞ þ bðx; tÞAðx; tÞ so that Dðx; tÞ ¼ A2ðx; tÞbðx; tÞ: ð2:11Þ
Here a(t) and b(x, t) are functions to be determined below. Under these circumstances we may express (2.2) and (2.3) as
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dX ¼ Aðx; tÞ½dxþ Sðx; tÞdt�; ð2:12Þ

dT ¼ aðtÞAðx; tÞ dxþ Sðx; tÞ þ b
a

� �
dt

� �
; ð2:13Þ

where S(x, t) :¼ B(x, t)/A(x, t). In view of (2.9) and (2.11) condition (2.10) simplifies to

_aþ bx ¼ 0: ð2:14Þ
Furthermore returning to (2.8) we require the coefficient of _x to satisfy

f ðx; tÞ ¼ 1
D

CBt � BCt þ DAt � ADt þ DBx � BDx½ � ð2:15Þ

and

gðx; tÞ ¼ 1
D
½DBt � BDt �: ð2:16Þ

Using (2.9) and (2.11) one can rewrite (2.15) as

f ðx; tÞ ¼ Sx � 2 _aþ bx

b

� �
S� bt

b
ð2:17Þ

while (2.16) becomes

gðx; tÞ ¼ St �
_aSþ bt

b

� �
S: ð2:18Þ

Thus, when there exists a function S(x, t) such that the above two equations are satisfied, it follows from (2.12) and (2.13) that
there exists a first integral of the form

Iðt; x; _xÞ ¼ _xþ S
að _xþ SÞ þ b

: ð2:19Þ

Before presenting our main result, we quickly see whether the above procedure works for the following equation of modified
Emden type [6,3].

Example. Notice that, if we choose S(x, t) = bx2, b(x, t) = �kx and a(t) = kt, then substitution into (2.15) and (2.16) leads to the
equation

€xþ 3bx _xþ b2x3 ¼ 0:

Its associated first integral by the formula stated in (2.19) is

Iðt; x; _xÞ ¼ _xþ bx2

ktð _xþ bx2 � x=tÞ :

2.1. Generalized time-dependent Riccati equation

We consider the Gambier Eq. (1.3) with minor changes of notation

€x ¼ n� 1
n

_x2

x
þ a

nþ 2
n

x _xþ b _x� n� 2
n

_x
x
r� a2

n
x3 þ ð _a� abÞx2 þ ðcn� 2a

n
rÞx� br� r2

nx
; ð2:20Þ

where c ¼ _b
2 � b2

4 .
If we assume r = 0 and n = 1 then the above system reduces to the generalized time-dependent Riccati equation or Sugai

equation [23]. It is evident that the Sugai equation includes as special cases the TDSORE for the particular choice b = 0 while
the Gambier V equation, namely

€x ¼ �3x _xþ bðtÞx� x3 þ bðtÞx2; ð2:21Þ
corresponds to the specific choice n = 1, r = 0, a(t) = �1 and c = 0. One of the main results of this paper is the following
proposition.

Proposition 2.1. A time-dependent first integral of the variable coefficient second-order equation

€x� ½3hðtÞxþ rðtÞ� _xþ h2ðtÞx3 � ½ _hðtÞ � hðtÞrðtÞ�x2 þ kðtÞxþ r2ðtÞ
4

� _rðtÞ
2

� �
x ¼ 0 ð2:22Þ

is given by the function
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Iðt; x; _xÞ ¼ _xþ S
aðtÞð _xþ SÞ � _ax

ð2:23Þ

where

Sðx; tÞ ¼ €a
_a
� rðtÞ

� �
x
2
� hðtÞx2

and k(t) is given by the Schwarzian derivative

kðtÞ ¼ 1
2

a
���

_a
� 3
2
€a2

_a2

" #
:

Proof. The proof essentially revolves around finding the function S(x, t). Using (2.14) to simplify (2.17) it follows that S must
satisfy the following:

f ðx; tÞ ¼ �ð3hðtÞxþ rðtÞÞ ¼ Sx �
_a
b

� �
S� bt

b
; ð2:24Þ

gðx; tÞ ¼ St �
_aSþ bt

b

� �
S; ð2:25Þ

where

gðx; tÞ ¼ h2ðtÞx3 � ½ _hðtÞ � hðtÞrðtÞ�x2 þ kðtÞxþ r2ðtÞ
4

� _rðtÞ
2

� �
x:

A particular solution of (2.14) is clearly given by

bðx; tÞ ¼ � _ax; ð2:26Þ
where we have set the constant of integration to zero. Next we make the following ansatz for S(x, t), viz.

Sðx; tÞ ¼ S2ðtÞx2 þ S1ðtÞxþ S0ðtÞ:
Upon substitution of this into the right side of (2.24) and after equation of the coefficients of the different powers of x we get

S0ðtÞ ¼ 0; S1ðtÞ ¼ 1
2

€a
_a
� rðtÞ

� �
and S2ðtÞ ¼ �hðtÞ;

so that

Sðx; tÞ ¼ €a
_a
� rðtÞ

� �
x
2
� hðtÞx2: ð2:27Þ

It is easy to verify that this expression for S gives the required form of the function g(x, t) when substituted in (2.25). h

Corollary 2.1. A time-dependent first integral of the variable coefficient second-order equation

€xþ 3hðtÞx _xþ h2ðtÞx3 þ kðtÞxþ _hðtÞx2 ¼ 0; ð2:28Þ
is given by the function

Iðt; x; _xÞ ¼ _xþ S
aðtÞð _xþ SÞ � _ax

; ð2:29Þ

where Sðx; tÞ ¼ hðtÞx2 þ €ax=2 _a and k(t) is given by the Schwarzian derivative

kðtÞ ¼ 1
2

a
���

_a
� 3
2
€a2

_a2

" #
:

Proof. The proof follows from the previous proposition by setting r(t) = 0 and replacing hðtÞ ! �hðtÞ. h

Proposition 2.2. If a(t) be such that the function RðtÞ :¼ €a= _a satisfies a first-order Riccati equation, then the Eq. (2.28) can be
mapped to a standard variable coefficient second-order Riccati equation.
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Proof. The second-order Riccati equation of variable coefficients is given by

€xþ 3hðtÞx _xþ h2ðtÞx3 þ _hðtÞx2 ¼ 0:

It is easy to see that, when k(t) = 0, (2.28) reduces to a second-order Riccati equation with variable coefficients. The vanishing
of k(t) leads to the first-order Riccati equation, namely

Rt � 1
2
R2 ¼ 0: ð2:30Þ

In a similar manner it can be shown that a first integral for the Gambier V Eq. (2.21) is given by

Iðx; _x; tÞ ¼ _xþ x2

bðtÞð _xþ x2Þ � xbðtÞ2=2
;

when b(t) is a solution of the first-order Riccati equation (2.30).
It is evident that once a first integral is obtained one can easily read off the nonholonomic transformation from its

numerator and denominator respectively in view of (2.6). h

3. Nonholonomic transformations for third-order differential equations

The linearization problem in case of third-order ODEs has previously been studied from the perspective of point and con-
tact transformations [14]. However, continuing in the same spirit as above, we consider in this section a general third-order
differential equation (TODE) of the form

x
��� þa0ðx; tÞ€xþ g2ðx; tÞ _x2 þ g1ðx; tÞ _xþ g0ðx; tÞ ¼ 0 ð3:1Þ

and search for a nonholonomic transformation such that it is mapped to the following equation

X000ðTÞ ¼ 0; ð3:2Þ
(here X0 = dX/dT), by the nonholonomic transformation

dX ¼ Aðx; tÞdxþ Bðx; tÞdt; dT ¼ Hðx; tÞdt: ð3:3Þ
It is a matter of straightforward computation to show that the TODE (3.1) is mapped to (3.2) provided its coefficients satisfy
the following conditions:

2
At

A
þ Bx

A
� B
A
Hx

H
� 3

Ht

H
¼ a0ðx; tÞ; ð3:4Þ

3
Ax

A
� 4

Hx

H
¼ 0; ð3:5Þ

Axx

A
� Hxx

H
� 3

Hx

H
Ax

A
þ 3

Hx

H

� �2

¼ 0; ð3:6Þ

2
Axt

A
� 2

Hxt

H
þ Bxx

A
� Hxx

H
B
A
� 3

Ht

H
Ax

A
þ 6

Hx

H
Ht

H
� 3

Hx

H
At

A
� 3

Bx

A
Hx

H
þ 3

B
A

Hx

H

� �2

¼ g2ðx; tÞ; ð3:7Þ

Att

A
� Htt

H
þ 2

Bxt

A
� 2

B
A
Hxt

H
� 3

Ht

H
At

A
þ 3

Ht

H

� �2

� 3
Ht

H
Bx

A
þ 6

B
A
Hx

H
Ht

H
� 3

Hx

H
Bt

A
¼ g1ðx; tÞ; ð3:8Þ

Btt

A
� Htt

H
B
A
� 3

Ht

H
Bt

A
þ 3

B
A

Ht

H

� �2

¼ g0ðx; tÞ: ð3:9Þ

Thus, given a TODE so that the explicit form of the coefficients a0(x, t) and gi, i = 0, . . . ,2, are known, the set of Eqs. (3.4)–(3.9)
constitutes an over-determined set for the three unknown functions A, B and H. Therefore, if upon solving the above set of
Eqs. (3.4)–(3.9) one can deduce the functions A, B and H, then the linearizing transformation can be determined and conse-
quently equations of the form (3.1) may be linearized to (3.2).

It is obvious that a first integral of (3.2) is given by

I1ðt; x; _x; €xÞ ¼ X00 ¼ constant: ð3:10Þ
The explicit form of the first integral can be immediately calculated from the transformation (3.3) and has the following
appearance,

X00 ¼ 1
H3 HA€xþ ðHAx � AHxÞ _x2 þ ðHAt � AHtÞ þ ðHBx � BHxÞð Þ _xþ ðHBt � BHtÞ

� �
;
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which may be written as

X00 ¼ 1
H

A
H
€xþ A

H

� �
x

_x2 þ A
H

� �
t

þ B
H

� �
x

� �
_xþ B

H

� �
t

� �
¼ constant: ð3:11Þ

Having explained the general idea behind the construction of a linearizing transformation for an equation of the form (3.1),
we proceed to the determination of the unknown functions A, B and H. From (3.5) we have

Hðx; tÞ ¼ aðtÞA3=4
; ð3:12Þ

where a(t) is an arbitrary function of t. Elimination of H from (3.6) leads to the following equation determining the function
A(x, t), namely

Axx

A
� 3
2

Ax

A

� �2

¼ 0; ð3:13Þ

which admits the solution

Aðx; tÞ ¼ cðtÞ
ð2� xbðtÞÞ2

: ð3:14Þ

Here b and c are arbitrary functions of t. Next eliminating H from (3.4) we have

B
A

� �
x

þ 1
4
Ax

A
B
A

� �
¼ 1

4
At

A
þ 3

_a
a
þ a0

which has the formal solution,

Bðx; tÞ ¼ A3=4ðx; tÞ
Z

A1=4 At

4A
þ 3

_a
a
þ a0

� �
dxþ dðtÞ

� �
: ð3:15Þ

Note that, since a, b, c and d are arbitrary functions of t, we can choose them to be constants in order to simplify the calcu-
lations. Secondly, having completed the determination of the unknown functions A, B and H involved in our nonholonomic
transformation, it remains to examine their compatibility with Eqs. (3.7)–(3.9). In the following we consider the case when
the functions a, b, c and d assume the following values.

Case (i) a = b = c = 1 and d = 0

With these values one finds that

Aðx; tÞ ¼ 1

ð2� xÞ2
; Hðx; tÞ ¼ 1

ð2� xÞ3=2
;

B
A
¼ 1

A1=4

Z x

A1=4a0ðs; tÞds: ð3:16Þ

Consequently from (3.7) to (3.9) we arrive at the following relations:

g2ðx; tÞ ¼ a0x � 1
2
a0

Ax

A

� �
� 3
4

Ax

A

� �
x

1

A1=4

Z x

A1=4a0ðs; tÞds
� �

; ð3:17Þ

g1ðx; tÞ ¼ 2a0t � 3
4

Ax

A

� �
1

A1=4

Z x

A1=4a0tðs; tÞds
� �

; ð3:18Þ

g0ðx; tÞ ¼
1

A1=4

Z x

A1=4a0ttðs; tÞds
� �

: ð3:19Þ

Instead of requiring the right hand sides of the above equations to match the given values of gi(x, t), i = 0, . . . ,2, we could
choose to define the gi by these very relations. Furthermore we assume

a0ðx; tÞ ¼ hðtÞf ðxÞ
and define a function,

FðxÞ :¼ 1

A1=4

Z x

A1=4f ðsÞds;

so that
B
A
¼ hðtÞFðxÞ:
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Then the expressions for gi become

g0ðx; tÞ ¼ €hðtÞFðxÞ; ð3:20Þ

g1ðx; tÞ ¼ _hðtÞ 2f ðxÞ � 3FðxÞ
2ð2� xÞ

� �
; ð3:21Þ

g2ðx; tÞ ¼ hðtÞ f 0ðxÞ � f ðxÞ
ð2� xÞ þ

3FðxÞ
2ð2� xÞ2

" #
: ð3:22Þ

Note that the explicit form of F(x) is given by

FðxÞ ¼ ð2� xÞ1=2
Z x f ðsÞ

ð2� sÞ1=2
ds:

Therefore a third-order equation of the form

x
��� þhðtÞf ðxÞ€xþ ½g2ðx; tÞ _x2 þ g1ðx; tÞ _xþ g0ðx; tÞ� ¼ 0

with g0, g1 and g2 given by the Eqs. (3.20)–(3.22) may be linearized to X
000
= 0 by the nonholonomic transformation

dX ¼ 1

ð2� xÞ2
½dxþ hðtÞFðxÞdt�; dT ¼ 1

ð2� xÞ3=2
dt: ð3:23Þ

Its associated first integral may be obtained from (3.11) and is given by the following expression

Iðx; t; _x; €xÞ ¼ ð2� xÞ€xþ 1
2
_x2 þ hðtÞ ð2� xÞF 0ðxÞ þ FðxÞ

2

� �
_xþ ð2� xÞFðxÞ _h ¼ constant: ð3:24Þ

Case (ii) a = 1,c = 4 and b = d = 0

This case is considerably simply because, when b = 0 and c = 4, it follows that A(x, t) = H(x, t) = 1 while from (3.15) we have
B ¼ R xa0ðs; tÞds ¼ hðtÞR xf ðsÞds (assuming a0 = h(t)f(x)). Moreover the expressions for gi, as stated above, reduce to the
following:

g2ðx; tÞ ¼ a0x ¼ hðtÞf 0ðxÞ; g1ðx; tÞ ¼ 2 _hf ðxÞ; g0ðx; tÞ ¼ €h
Z x

f ðsÞds :¼ €hF1ðxÞ: ð3:25Þ

The explicit nature of the transformation in this case is interesting since it does not involve any change in the time
coordinate,

dX ¼ dxþ hðtÞF1ðxÞdt; dT ¼ dt: ð3:26Þ
The corresponding first integral is now given by

I1ðx; t; _x; €xÞ ¼ €xþ hðtÞF 0
1ðxÞ _xþ _hðtÞF1ðxÞ

h i
¼ constant: ð3:27Þ

4. Conclusion

In this paper we have computed the first integrals of the time-dependent second-order Riccati equation and its general-
ization by using the method of nonholonomic transformations. It appears that unlike Sundman transformation this method
leads to considerable computational simplification. In the latter half of the paper we have calculated the first integral in cer-
tain particular cases of a generic third-order nonlinear equation, which may be viewed as a kind of generalization of the sec-
ond-order equation of Liénard type, €xþ f ðxÞ _xþ gðxÞ ¼ 0. Hence it would be interesting and tempting to apply this scheme to
compute the first integrals of the Chazy systems.
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We use a formula derived almost seventy years ago by Madhav Rao connecting the
Jacobi Last Multiplier of a second-order ordinary differential equation and its Lagrangian
and determine the Lagrangians of the Painlevé equations. Indeed this method yields the
Lagrangians of many of the equations of the Painlevé–Gambier classification. Using the
standard Legendre transformation we deduce the corresponding Hamiltonian functions.
While such Hamiltonians are generally of non-standard form, they are found to be
constants of motion. On the other hand for second-order equations of the Liénard class we
employ a novel transformation to deduce their corresponding Lagrangians. We illustrate
some particular cases and determine the conserved quantity (first integral) resulting
from the associated Noetherian symmetry. Finally we consider a few systems of second-
order ordinary differential equations and deduce their Lagrangians by exploiting again the
relation between the Jacobi Last Multiplier and the Lagrangian.

© 2009 Published by Elsevier Inc.

1. Introduction

The study of nonlinear ordinary differential equations (ODEs) has been an ongoing endeavor for well over two centuries
now with significant contributions by many of the greatest mathematicians of all times, such as Euler, Lie, Painlevé and
Poincaré to mention just a few. Their contributions have ranged from finding explicit solutions of ODEs, to developing
general methods of classifications, to the qualitative analysis of their solutions etc. These in turn have often led to the
opening of entirely new branches of study in algebra, topology, geometry and have shed new light on several physical
phenomena.

Over the years many techniques have been developed to obtain closed-form solutions of various kinds of ODEs. However,
there does not exist any single common method for obtaining their solutions. Nevertheless the apparently different tech-
niques share one common feature: they somehow tend to exploit the symmetries of ODEs. Consequently symmetry analysis
of ODEs has become one of the most powerful tools for analyzing them. The foundations of this method are contained in
the works of Sophus Lie [1,2].
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It is also well known that the existence of a sufficient number of first integrals greatly simplifies the process of solving
any ODE. Having said so, it is not always quite obvious what these first integrals are. Indeed their determination is, in
general, a nontrivial task. In the case of conservative mechanical systems, one often has just a single first integral – the
energy. In this context the semialgorithmic procedure developed by Prelle and Singer deserves mention [6]. In its original
version it applied to first-order ODEs involving rational functions with coefficients belonging to the field of complex num-
bers C. Subsequently their method, which involved the use of Darboux polynomials, was extended by Duarte et al. [7,8]
and Chandrasekhar et al. in a series of papers [3–5].

As is often the case in a field which has been so thoroughly investigated over the years, some aspects often tend to
fade out only to resurface after many years when new results point to a mysterious link with those of the past. One such
result, which has appeared in the recent literature on differential equations, concerns the Jacobi Last Multiplier. The credit
for resurrecting this has to go to Nucci and Leach, who have shown how it may be used to determine the first integrals
and also Lagrangians of a wide variety of nonlinear differential equations. It appears that the connection of the Jacobi Last
Multiplier to the existence of Lagrangian functions was the subject of investigation by a few authors in the early 1900s.
However, the precise nature of their interrelation was brought out by Rao in [9] in the 1940s. Thereafter this did not attract
much attention among researchers in the field of differential equations.

Recently there has been a renewal of interest in this area and it appears that Jacobi’s Last Multiplier can be incorporated
in the formalism initiated by Lie for the study of differential equations.

1.1. Motivation and plan

It is clear that Rao’s formula can be used to deduce the Lagrangian of a second-order ODE or even a system of such ODEs
once the last multiplier is known. Unlike the Hamiltonian structure of the six Painlevé equations, which have received much
attention [17], the Lagrangian formulation has not been sufficiently nurtured. In a recent paper Wolf and Brand [18] pro-
posed a Lagrangian for Painlevé VI. In this paper we investigate the Lagrangians for the majority of the Painlevé equations,
using Rao’s formula and also indicate its applicability to other equations of the Painlevé–Gambier classification.

The organization of the paper is as follows. In Section 2 we introduce the basic ideas underlying the Jacobi Last Multiplier
and state its defining equation for an nth-order ODE or an equivalent system of first-order ODEs. The connection between
the last multiplier and symmetries is also mentioned. It also contains a discussion of certain geometrical aspects underlying
Jacobi’s Last Multiplier. Section 3 constitutes the main body of this paper and explains the relationship between the Jacobi
Last Multiplier and the Lagrangian description of second-order ODEs. It includes a deduction of the Lagrangians for four
of the six Painlevé equations and also their corresponding Hamiltonians. It also briefly outlines the procedure for other
equations of the Painlevé–Gambier classification. In Section 4 we analyze in this context second-order equations of the
Liénard type. It contains a specific example of a generic equation of nonlinear oscillator type. Finally in Section 5 we apply
the technique to a coupled system of second-order ODEs, which has not been very extensively studied, and also summarize
the results for a couple of other more well-known systems.

2. The Jacobi Last Multiplier

Consider the nth-order ODE in the normal form

y(n) = w
(
x, y, y′, . . . , y(n−1)). (2.1)

Corresponding to this ODE there exists an equivalent first-order partial differential equation (PDE) in (n+ 1) variables,

D̃ f = (∂x + y′∂y + y′′∂y′ + · · · + w∂y(n−1) ) f = 0, (2.2)

in which the quantities y′, y′′ . . . are treated as independent variables at par with x and y.
Their equivalence is provided by the first integrals of (2.1). By definition a first integral is a global function, I =

I(x, y, y′, . . . , y(n−1)), that is constant along the solutions of (2.1), i.e.,

dI

dx
= D̃ I = Ix + y′ I y + y′′ I y′ + · · · + wI y(n−1) = 0. (2.3)

Having determined a first integral, say I = I(x, y, y′, . . . , y(n−1))= I0, one can invert it to obtain

y(n−1) = w1
(
x, y, y′, . . . , y(n−2); I0

)
provided I y(n−1) �= 0. This shows that the existence of a first integral allows for the reduction in the order of the differential
equation by one. Furthermore it is evident that every first integral is a solution of the linear PDE (2.2) and conversely.

Assume that φα , α = 1, . . . ,n denote a set of n functionally independent solutions of (2.2). As each φα is a first integral,
one has

φα
(
x, y, y′, . . . , y(n−1))= Iα0 , α = 1,2, . . . ,n. (2.4)
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Consequently by eliminating all derivatives from (2.4) one arrives at the general solution of (2.1) in the form

y = y
(
x; I10, . . . , In0

)
,

the Iα0 ’s being essentially constants of integration.
As we mentioned above, the determination of even a single first integral is in most cases a nontrivial task. Hence, while

in principle the above procedure is fine, its practical application is often a daunting task, to say the least.
Nevertheless, assuming we have at our disposal (n− 1) solutions φα of the linear PDE D̃ f = 0, by means of the Jacobi

Last Multiplier the nth solution can be obtained by a quadrature. The formal definition of the Jacobi Last Multiplier is as
follows.

Definition 2.1. Given an nth-order ODE or its equivalent linear PDE in (n+ 1) variables

D̃ f = (∂x + y′∂y + y′′∂y′ + · · · + w∂y(n−1) ) f = 0,

the Jacobi Last Multiplier M is defined by

MD̃ f := ∂( f , φ1, φ2...φn−1)

∂(x, y, y′, . . . , y(n−1))
= det

⎛
⎜⎜⎜⎜⎝

fx f y . . . f y(n−1)

φ1
x φ1

y . . . φ1
y(n−1)

...
... . . .

...

φ
(n−1)
x φ

(n−1)
y . . . φ

(n−1)
y(n−1)

⎞
⎟⎟⎟⎟⎠= 0. (2.5)

From the above definition it follows that the Jacobi Last Multiplier (JLM) can be varied by selecting a different set of
(n− 1) independent solutions ψ1,ψ2, . . . ,ψn−1 of (2.2). If the corresponding JLM be M̃ , then

M̃ D̃ f = ∂( f ,ψ1,ψ2, . . . ,ψn−1)

∂(x, y, y′, . . . , y(n−1))
= ∂( f , φ1, φ2, . . . , φn−1)

∂(x, y, y′, . . . , y(n−1))

∂(ψ1,ψ2, . . . ,ψn−1)

∂(φ1, φ2, . . . , φn−1)
= M

∂(ψ1,ψ2, . . . ,ψn−1)

∂(φ1, φ2, . . . , φn−1)
.

Indeed each JLM, as defined above, turns out to be a solution of the following linear PDE

∂M

∂x
+

n∑
k=1

∂
(
y(k)M

)
∂ y(k−1)

= 0 on y(n) = w
(
x, y, y′, . . . , y(n−1)) (2.6)

or, if the ODE be expressed as a system of first-order ODEs of the form

ẋk =Wk(t, x1, . . . , xn), k= 1,2, . . . ,n, (2.7)

as a solution of the equation

d

dt
logM +

n∑
i=1

∂Wi

∂xi
= 0. (2.8)

It is evident that the classical definition of the JLM is overly restrictive, requiring as it does almost complete knowledge of
the system. However, being dependent on first integrals, it is natural to expect that it should bear some connection to the
symmetries of the equation under investigation. This connection was unravelled by Lie and its formulation in terms of the
generators of the Lie symmetry algebra is outlined below.

For the ODE in Eq. (2.1) or its equivalent PDE given by (2.2) let Xi = ξi∂x + ηi∂y denote n Lie point symmetry generators
of the equation. The vector field associated with D̃ f = 0 has (n+1) components (1, y′, . . . , w) on y(n) = w(x, y, . . . , y(n−1)).
Using standard methods for constructing the prolongations of these generators Xi up to the (n− 1)th-order, viz.

X (n−1)
i = ξi∂x + ηi∂y + η

(1)
i ∂y′ + · · · + η

(n−1)
i ∂y(n−1) , i = 1,2, . . . ,n,

consider the determinant

�= det

⎛
⎜⎜⎜⎝

1 y′ y′′ . . . f y(n−1) w

ξ1 η1 η
(1)
1 . . . η

(n−2)
1 η

(n−1)
1

...
...

... . . .
...

...

ξn ηn η
(1)
n . . . η

(n−2)
n η

(n−1)
n

⎞
⎟⎟⎟⎠ . (2.9)

If � �= 0, then the JLM is given by M =�−1.
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Similarly for a system of n first-order ODEs given by (2.7) the associated vector field has components (1,W1, . . . ,Wn). If
we can find n symmetry generators of the form Xi =∑n

j=0 aij
∂

∂x j
, i = 1, . . . ,n, with x0 = t , then the last multiplier is given

by

M−1 =�= det

⎛
⎜⎜⎜⎝

1 W1 · · · Wn

a10 a11 . . . a1n
...

... . . .
...

an0 an1 . . . ann

⎞
⎟⎟⎟⎠ . (2.10)

Since M satisfies (2.8), it follows that the ratio of two last multipliers is a first integral, i.e.,

d

dt

(
M1

M2

)
= 0.

In other words the ratios of the �i ’s (i � 2) provide us first integrals for the system of equations (2.7).

2.1. Geometric description of Jacobi’s Last Multiplier

Let M = M(x) be a non-negative C1 function non-identically vanishing on some open subset of R
n . Then Jacobi’s Last

Multiplier is a solution of the linear partial differential equation
n∑

i=1

∂(MWi)

∂xi
= 0, (2.11)

where W =∑n
i=1 Wi∂xi is the vector field of the system of first-order ODEs. Essentially, if a Jacobi multiplier is known

together with (n− 2) first integrals, then we can reduce locally to a 2D vector field on the intersection of the (n− 2) level
sets formed by first integrals.

Let Ω = dx1 ∧ · · · ∧ dxn be a volume form on R
n . Define an inner product, 〈·,·〉, between 1-forms and (n− 1)-forms on

R
n as

ω1 ∧ω2 = 〈ω1,ω2〉Ω.

So both the space of vectors and the space of (n − 1)-forms are dual to the space of 1-forms. Hence there is a natural
isomorphism between the space of vectors and the space of (n− 1)-forms. Let W be a vector field. Then W corresponds to
(n− 1) form ωW under isomorphism

iWΩ =ωW =
n∑

i=1

(−1)(i−1)Wi dx
1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn. (2.12)

Thus the condition for Jacobi’s Last Multiplier can be manifested as [11,12]

0= d(MωW)=
(

n∑
i=1

∂(MWi)

∂xi

)
Ω.

Therefore an element, M , is called a Jacobi’s Last Multiplier for an ODE if

d(MωW)= dM ∧ωW +MdωW = 0. (2.13)

Using

LWωW = (divΩ W)ωW (2.14)

and (dg)∧ωW = (Wg)Ω (∀g ∈ C∞(Rn)) we can show that the Jacobi Last Multiplier M satisfies

WM +M divΩ W= 0. (2.15)

This equation reveals that M is a last multiplier for the divergence-free vector field W if and only if M is a first integral
of W. In general the vector field W is not divergence-free and in this situation the theory of multipliers, namely, the ratio
of two multipliers is a first integral etc., holds good. In fact the set of last multipliers measures how far away W is from the
divergence-free condition.

The theory of the Jacobi Last Multiplier is also connected to another important method namely adjoint symmetry equa-
tion in determining explicit integrating factors and first integrals of nonlinear ODEs. One can define the action of the adjoint
vector field W∗ corresponding to W on functions [13] as

W∗(M)=−W(M)−M divΩ W= 0. (2.16)

Thus solving the adjoint equation one can obtain Jacobi’s Last Multiplier. This is the essential feature of adjoint method.
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We state another geometrical idea related to the last multiplier. Characterization of Jacobi’s Last Multiplier can be ob-
tained in terms of the Marsden differential [14]. Let m ∈ C∞(M). Then the Marsden differential,

dm :Λ∗(M)→Λ∗+1(M)

is given by

dm(η)= 1

m
d(mη). (2.17)

Thus M is a Jacobi Last Multiplier if and only if ωW is dM -closed.
A vector field, S, is called a symmetry of an ODE given by a vector field, W, if

LSW= [W,S] = λW, λ ∈ C∞. (2.18)

Let S1, . . . ,Sn−1 be (n− 1) symmetries. Define

h= i Sn−1 · · · i2i1ωW. (2.19)

Then M = h−1 is a last multiplier for ωW , i.e., d(MωW)= 0. This can be proved using the symmetry condition.

LWh= LWi Sn−1 · · · i2i1ωW = (i[W,Sn−1] + i Sn−1 LW)i Sn−2 · · · i S2 i S1W.

The first term in the expression above vanishes. Thus recursively one can prove that

LWh= h divΩ W, (2.20)

where the function M = h−1 is called an inverse multiplier.
At last we wish to outline a connection between last multiplier and Nambu mechanics. Consider a special case of (2.14),

a divergence-free condition

divΩ W=
n∑

i=1

∂Wi

∂xi
= 0. (2.21)

In this situation Eq. (2.7) can be mapped to Nambu dynamical systems, i.e. systems of time-autonomous ODEs of the
form [15], with a special value of Wi

ẋi =Wi(x)= ε j1,..., jnδ
i
j1

∂H2

∂x j2
· · · ∂Hn

∂x jn
. (2.22)

In other words a system obeying Nambu mechanics automatically satisfies the Liouville condition. In fact by duality the
vector field W=Wi(x)∂/∂xi maps to an (n− 1)-differential form given by

ωW = 1

(n− 1)!ε j1,..., jnW j1 dx
j2 ∧ · · · ∧ dx jn

= 1

(n− 1)!εk1,...,knε j1,..., jnδk1 j1

[
∂H2

∂x j2
dx j2

]
∧ · · · ∧

[
∂Hn

∂x jn
dx jn

]
= dH2 ∧ · · · ∧ dHn.

Thus ωW is a decomposable and closed (n− 1)-form and the set of (n− 1) independent functions, H2, . . . , Hn , are such
that every integral curve is given by an equation of the form H2(x)= C2, . . . , Hn(x)= Cn .

3. Lagrangians and the last multiplier

In a series of recent papers Leach, Nucci and Tamizhmani (for example, [16,19–21] and references therein) have investi-
gated the relation between integrating factors and the Hessian. It appears that this connection has a long history, which can
be traced to Jacobi’s attempts to obtain the last multiplier [23,24]. In 1874 Lie [1,2] showed that point symmetries could
be used to determine Jacobi’s Last Multiplier (JLM). The explicit nature of the relation between the JLM and Hessian was
clarified by Rao in a article [9] and is also mentioned in Whittaker’s book on analytical dynamics [10].

3.1. Second order equations

For a second-order ODE y′′ = w(x, y, y′) which admits a Lagrangian function L(x, y, y′) the Jacobi Last Multiplier, M , is
given by

M = ∂2L

∂ y′2
. (3.1)
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On the other hand, given a system of first order equations

y′k = fk(x, y), y = (y1, y2, . . . , yn),

the JLM is a solution of the equation

d logM

dx
+

n∑
k=1

∂ fk
∂ yk

= 0.

It follows that, if a solution of this equation is obtained, then from a knowledge of the JLM one can construct the Lagrangian
function as

L(x, y, y′)=
∫ (∫

Mdy′
)
+ f1(x, y)y

′ + f2(x, y). (3.2)

3.2. Lagrangians for the Painlevé equations

A large number of second-order ODEs in the Painlevé–Gambier classification system belong to the following class of
equations, namely

ẍ+ 1

2
φxẋ

2 + φt ẋ+ B(t, x)= 0. (3.3)

Writing this equation in the form

ẍ=F(t, x, ẋ)=−
[
1

2
φxẋ

2 + φt ẋ+ B(t, x)

]
,

the Jacobi Last Multiplier M for (3.3) is given by the solution of

d

dt
logM =−∂F

∂ ẋ
. (3.4)

In the present case we have

M = ∂2L

∂ ẋ2
= exp

[
φ(t, x)

]
. (3.5)

By (3.2) we then obtain the Lagrangian as

L(t, x, ẋ)= 1

2
eφ(t,x) ẋ2 + f1(t, x)ẋ+ f2(t, x). (3.6)

To determine the unknown functions, f1 and f2, we substitute this Lagrangian into the Euler–Lagrange equation of motion

d

dt

(
∂L

∂ ẋ

)
= ∂L

∂x
(3.7)

and use (3.3) to get

f1t − f2x = eφB(t, x).

The making of a gauge transformation f1 = Gx and f2 = Gt + f3(t, x) allows us to satisfy the last equation when

f3(t, x)=−
∫

eφB(t, x)dx. (3.8)

Consequently the final Lagrangian for (3.3) becomes

L(t, x, ẋ)= eφ(t,x) ẋ
2

2
−

∫
eφB(t, x)dx+ dG

dt
. (3.9)

The total derivative term obviously is of little consequence. Hence we may safely discard it.
The conjugate momentum may be defined by

p = ∂L

∂ ẋ
= eφ ẋ which implies ẋ= e−φ p
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and leads to the Hamiltonian

H = e−φ p2

2
+

∫
eφB(t, x)dx

by the usual Legendre transformation. It is clear that the Lagrangian obtained in the above manner is a non-standard one.
One can attempt to bring it closer to the standard form by means of the transformation

ẏ = eφ/2ẋ or y(t, x)=
∫

eφ(t,x)/2 dx. (3.10)

We illustrate this by a specific example in the sequel.

3.2.1. The Painlevé III equation
The PIII equation may be written as

ẍ− 1

x
ẋ2 + 1

t
ẋ+ B(t, x)= 0, (3.11)

where B(t, x)=−[ 1t (αx2 + β)+ γ x3 + δ
x ]. Comparison with (3.3) shows that φx =−2/x and φt = 1/t which yields for the

last multiplier M = expφ = t/x2. Then from (3.9) we obtain

LIII = t

x2
ẋ2

2
+ αx− β

x
+ t

(
γ x2

2
− δ

2x2

)
(3.12)

and the Hamiltonian as

HIII = x2

t

p2

2
+

(
β

x2
− αx

)
+ t

2

(
δ

x2
− γ x2

)
. (3.13)

3.2.2. The Painlevé V equation
The PV equation may be written as

ẍ−
(

1

2x
+ 1

x− 1

)
ẋ2 + 1

t
ẋ+ B(t, x)= 0, (3.14)

where

B(t, x)=−
[

(x− 1)2

t2
(αx+ β

x
)+ γ x

t
+ δx(x+ 1)

x− 1

]
.

Following the same procedure as before we obtain for the Jacobi Last Multiplier

M = t

x(x− 1)2

and the Lagrangian

LV = t

x(x− 1)2
ẋ2

2
+ 1

t

(
αx− β

x

)
− γ

x− 1
− δ

tx

(x− 1)2
. (3.15)

The corresponding Hamiltonian is

HV = x(x− 1)2

t

p2

2
− 1

t

(
αx− β

x

)
+ γ

x− 1
+ δ

tx

(x− 1)2
. (3.16)

3.2.3. The Painlevé IV equation
The PIV equation may be written as

ẍ− 1

2x
ẋ2 + B(t, x)= 0, (3.17)

where

B(t, x)=−
[
3

2
x3 + 4tx2 + 2(t2 − α)x+ β

x

]
.

Unlike the previous two Painlevé equations, here we have φt = 0 so that the last multiplier is now time independent. Indeed
for the PIV equation we have M = 1/x while the corresponding Lagrangian is

LIV = 1

x

ẋ2

2
+

[
β ln |x| + (

t2 − α
)
x2 + 4

3
tx3 + 3

8
x4

]
. (3.18)
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The associated Hamiltonian is

HIV = xp2

2
−

[
β ln |x| + (

t2 − α
)
x2 + 4

3
tx3 + 3

8
x4

]
. (3.19)

3.2.4. The Painlevé VI equation
The PVI equation is perhaps one of the most well-studied equations of the Painlevé class. It may be written as

ẍ− 1

2

(
1

x
+ 1

x− 1
+ 1

x− t

)
ẋ2 +

(
1

t
+ 1

t − 1
+ 1

x− t

)
ẋ+ B(t, x)= 0, (3.20)

where

−B(t, x)= (x− 1)(x− 1)(x− t)

t2(t − 1)2

[
α + βt

x2
+ γ (t − 1)

(x− 1)2
+ δt(t − 1)

(x− t)2

]
.

In this case we have

φx =−
(
1

x
+ 1

x− 1
+ 1

x− t

)
and φt =

(
1

t
+ 1

t − 1
+ 1

x− t

)
so that the last multiplier is given by

M = eφ = t(t − 1)

x(x− 1)(x− t)
. (3.21)

The Lagrangian for the PVI equation is found to be

LVI(t, x, ẋ)= t(t − 1)

x(x− 1)(x− t)

ẋ2

2
+

∫
t(t − 1)

x(x− 1)(x− t)

(−B(t, x)
)
dx+ dG

dt
,

LVI(t, x, ẋ)= t(t − 1)

x(x− 1)(x− t)

ẋ2

2
+ αx

t(t − 1)
− β

x(t − 1)
− γ

t(x− 1)
− δ

x− t
+ dG

dt
. (3.22)

Let p be the conjugate momentum. With

p = ∂L

∂ ẋ
= t(t − 1)

x(x− 1)(x− t)
ẋ

the corresponding Hamiltonian is

HVI = t(t − 1)

x(x− 1)(x− t)

p2

2
− αx

t(t − 1)
+ β

x(t − 1)
+ γ

t(x− 1)
+ δ

x− t
. (3.23)

Besides the Painlevé equations many other equations of the Painlevé–Gambier classification may also be treated in a
similar manner. We illustrate this below.

3.2.5. The Painlevé–Gambier equations XXI
This equation is of the form

ẍ− 3

4x
ẋ2 − 3x2 = 0. (3.24)

The Jacobi Last Multiplier is given by M = x−3/2 and the corresponding Lagrangian is

L21 = x−3/2 ẋ
2

2
+ 2x3/2. (3.25)

The associated Hamiltonian H21 provides a first integral (i.e., dH21
dt = 0), namely

H21 = x−3/2 ẋ
2

2
− 2x3/2. (3.26)

It is interesting to note that L21 and H21 both have a ‘wrong relative sign’. Consider the transformation

x �→ y = 4x1/4 so that ẏ = x−3/4ẋ. (3.27)

Under this transformation the Lagrangian L21 assumes the more familiar form

L21(t, y, ẏ)=
[
1

2
ẏ2 + (

2(y/4)6
)]

.
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4. Equations of the Liénard type

In a series of interesting papers Chandrasekhar et al. have made a thorough study of many nonlinear equations of the
oscillator type, using an extension of the Prelle–Singer method [3–5]. We investigate below one such generic equation of
the Liénard type,

ẍ+ f (x)ẋ+ g(x)= 0 (4.1)

from the perspective of the Jacobi Last Multiplier.

4.1. Lagrangian for second-order Liénard type of equations

From (3.4) the last multiplier for Eq. (4.1) is given by M = exp(
∫

f (x)dt). Following [20] we introduce a new variable v
by setting∫

f (x)dt = log
(
v−α−1)

(4.2)

which implies

v̇ + α f (x)v = 0, (4.3)

with α being a nonzero scalar to be determined. As a result we have

M = v−α−1
. (4.4)

Indeed, if we can map the original equation, (4.1), to the first-order Eq. (4.3) in terms of the variable v , then a suitable
Lagrangian can be easily deduced. It is obvious that v must be linear in ẋ. In fact it is shown in [20] that such a map exists
and is given by

v = ẋ+ g

α f
(4.5)

provided f and g satisfy the condition

d

dx

(
g

f

)
= α(1− α) f . (4.6)

From (4.4), since M = ∂2L/∂ ẋ2, we find that

L = 1

(2− α−1)(1− α−1)
v2−α−1 + f1v + f2. (4.7)

Now we substitute this into the Euler–Lagrange equation leads to the condition

f1t − f2x = d

dx

(
f1

g

α f

)
,

which may be satisfied by setting f1 = Gx and f2 = Gt + f3 yielding

f3x =− d

dx

(
Gx

g

α f

)
⇒ f3 =−Gx

g

α f
.

The simple choice Gx = 0, i.e., f1 = 0 gives, f3 = 0 and f2 = dG/dt . Thus

L = 1

(2− α−1)(1− α−1)

(
ẋ+ g

α f

)2−1/α

+ dG

dt
, α �= 0,

1

2
,1. (4.8)

We can rescale the Lagrangian to get rid of the inconsequential scalar factors and also drop the total time derivative to get
it into the neater form

L =
(
ẋ+ g

α f

)2−1/α

. (4.9)

This Lagrangian, being invariant under time translation, admits a Noether symmetry with corresponding conserved quantity
or first integral (disregarding overall scalar factors)

I =
(
ẋ+ g

α f

)1−1/α
(α − 1) f ẋ− g

f
. (4.10)
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4.2. Example: A generic equation of nonlinear oscillator type

Consider the following equation

ẍ+ (
k1x

q + k2
)
ẋ+ (

k3x
2q+1 + k4x

q+1 + k5x
)= 0. (4.11)

This is a generic equation of nonlinear oscillator type, which includes many subcases depending upon the choice of the ki ,
which are parameters. The case q = 0 corresponds to a damped harmonic oscillator, while q = 1 corresponds to the force-
free Helmholtz oscillator. Substituting f and g from (4.11) into the condition (4.6), we obtain the following equations from
the different coefficients of x.

α(1− α)= (q+ 1)
k3
k21

, (4.12)

α(1− α)= k5
k22

, (4.13)

k1k4 + k2k3(2q+ 1)= α(1− α)k21k2, (4.14)

k1k5(1− q)+ k2k4(1+ q)= 3α(1− α)k1k
2
2. (4.15)

Equating (4.12) and (4.13) we find that

q+ 1= k21k5

k22k3
. (4.16)

Using this value of q in the remaining Eqs. (4.14) and (4.15) while eliminating α by means of (4.13), we get

k5 = k2
k21

(k1k4 − k2k3). (4.17)

The constant α is determined from the quadratic equation (4.13) and is

α = 1

2

(
1±

√
1− 4k5

k22

)
, (4.18)

where k5 is given by (4.17). Given q there exists another relation between the ki (i = 1, . . . ,5) derivable from (4.16) and
(4.17), viz.

k1k4
k2k3

= q+ 2. (4.19)

Thus of the five parameters ki (i = 1, . . . ,5) only three are independent and to summarize we have the following relations:

k4 = k2k3
k1

(q+ 2),

k5 = k22k3
k1

(q+ 1),

α = 1

2

(
1±

√
1− 4k3

k21
(q+ 1)

)
.

4.2.1. Special cases

When q = 0, we have k1k4 = 2k2k3 and k5 = k22k3/k
2
1. Consequently α = 1

2 (1 ±
√
1− 4k3

k21
) and the equation

ẍ+ (k1 + k2)ẋ+ (k3 + k4 + k5)x= 0, which is simply the damped harmonic oscillator, has Lagrangian

L =
(
ẋ+ (k3 + k4 + k5)x

α(k1 + k2)

)2−1/α

.

When q = 1, we have k1k4 = 3k2k3 and k5 = 2k22k3/k
2
1 while α = 1

2 (1 ±
√
1− 8k3/k21). The Lagrangian for the equation,

ẍ+ (k1x+ k2)ẋ+ k3(x3 + 3k2/k1x2 + 2k22/k
2
1x)= 0 is

L =
{
ẋ+ k3

αk1

(
x2 + 2k2/k1x

)}2−1/α

.

From this Lagrangian one can easily compute the conjugate momentum to obtain the corresponding Hamiltonian.
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5. A system of second-order coupled equations

The extension of the above technique to a system of second-order ODEs is also possible under certain conditions. We
describe below the formulation as presented in [22]. In the case of a system of n degrees of freedom the Lagrangian
L = L(t,q, q̇), where q = {q1, . . . ,qn} and q̇ = {q̇1, . . . , q̇n} define the generalized coordinates and corresponding velocities,
we may define the i jth Jacobi Last Multiplier by

Mij = ∂2L

∂q̇i∂q̇ j
, i, j = 1, . . . ,n. (5.1)

It is assumed that the equations of motion:

q̈k = wk(t,q, q̇), k= 1, . . . ,n, (5.2)

are derivable from the Euler–Lagrange equations

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= 0, j = 1, . . . ,n. (5.3)

It is evident that the conjugate momenta are

p j = ∂L

∂q̇ j
= p j(t,q, q̇), j = 1, . . . ,n,

which implies

dp j

dt
= ∂p j

∂t
+

n∑
k=1

(
q̇k

∂p j

∂qk
+ wk

∂p j

∂q̇k

)
= ∂L

∂q j
.

This means

∂

∂t

(
∂L

∂q̇ j

)
+

n∑
k=1

(
q̇k

∂2L

∂qk∂q̇ j
+ wk

∂p j

∂q̇k∂q̇ j

)
− ∂L

∂q j
, j = 1, . . . ,n. (5.4)

Differentiating (5.4) with respect to q̇i and using the definition of the last multiplier given in (5.1) we find

∂Mij

∂t
+

n∑
k=1

(
∂

∂qk
(q̇kMij)+ ∂

∂q̇k
(wkMij)

)
+

n∑
k=1

(
∂wk

∂q̇i
Mkj − ∂wk

∂q̇k
Mij

)
+ ∂2L

∂qi∂q̇ j
− ∂2L

∂q̇i∂q j
= 0. (5.5)

Interchanging i and j in (5.5) we get

∂M ji

∂t
+

n∑
k=1

(
∂

∂qk
(q̇kM ji)+ ∂

∂q̇k
(wkM ji)

)
+

n∑
k=1

(
∂wk

∂q̇ j
Mki − ∂wk

∂q̇k
M ji

)
+ ∂2L

∂q j∂q̇i
− ∂2L

∂q̇ j∂qi
= 0. (5.6)

Adding (5.5) and (5.6) and making use of the fact that Mij = M ji we have

∂Mij

∂t
+

n∑
k=1

(
∂

∂qk
(q̇kMij)+ ∂

∂q̇k
(wkMij)

)
+

n∑
k=1

(
1

2

(
∂wk

∂q̇i
Mkj + ∂wk

∂q̇ j
Mki

)
− ∂wk

∂q̇k
Mij

)
= 0. (5.7)

It is evident that Mij satisfies the defining relation (2.6) for the JLM whenever

n∑
k=1

(
∂wk

∂q̇i
Mkj + ∂wk

∂q̇ j
Mki

)
= 2

n∑
k=1

∂wk

∂q̇k
Mij for each k= 1, . . . ,n. (5.8)

A trivial way to ensure this condition is satisfied is to assume the wk ’s to be velocity independent,

∂wk

∂q̇l
= 0 for all k, l= 1, . . . ,n.

On the other hand, when i = j, the last two terms in (5.5) cancel leaving

∂Mii

∂t
+

n∑
k=1

(
∂

∂qk
(q̇kMii)+ ∂

∂q̇k
(wkMii)

)
+

n∑
k=1

(
∂wk

∂q̇i
Mki − ∂wk

∂q̇k
Mii

)
= 0. (5.9)
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Here also Mii satisfies (2.6) when the last sum of (5.9) vanishes, which may be ensured by choosing the wk ’s to be velocity
independent. Under these circumstances all the Mij ’s satisfy the equation

∂Mii

∂t
+

n∑
k=1

(
∂

∂qk
(q̇kMii)+ ∂

∂q̇k
(wkMii)

)
= 0, (5.10)

as they should, provided ∂wk/∂q̇ j = 0 for all k, j = 1, . . . ,n. With this assumption equations (5.7) and 5.10) always admit the
solution Mij = constant. The following examples illustrate how simple choices of Mij can be made to obtain the Lagrangians
of second-order ODEs satisfying the above velocity-independent criterion.

Example 1. Consider the system

ẍ+ α

x2
g(y/x)− λ

x3
= 0,

ÿ + β

x2
f (y/x)− µ

y3
= 0.

Here w1(x, y)= −αg(y/x)/x2 + λ/x3 and w2(x, y)= −β f (y/x)/x2 +µ/y3 respectively. On the other hand α,β,λ and µ
are arbitrary parameters while g and f are functions with argument u = y/x. Notice that w1 and w2 are independent of
the velocities. The Jacobi Last Multiplier for this system is therefore a solution of the equation,

∂M

∂t
+ ∂(Mẋ)

∂x
+ ∂(M ẏ)

∂ y
+ ∂(Mw1)

∂ ẋ
+ ∂(Mw2)

∂ ẏ
= 0,

and admits constant solutions. We choose them as follows:

Mxy = Myx = 0 and Mxx = Myy = 1.

These yield the Lagrangian

L = 1

2

(
ẋ2 + ẏ2

)+ h1(t, x, y)ẋ+ h2(t, x, y) ẏ + h3(t, x, y).

Substitution of this into the Euler–Lagrange equations for x and y gives, upon using the original equations of motion,

h1t − h3x + w1 + (h1y − h2x) ẏ = 0, (5.11)

h2t − h3y + w2 + (h2x − h1y)ẋ= 0. (5.12)

Equating the coefficients of ẋ and ẏ respectively we get the following set of equations:

h1y − h2x = 0 which implies h1 = Gx, h2 = Gy and (5.13)

h1t − h3x + w1 = 0, (5.14)

h2t − h3y + w2 = 0. (5.15)

These in turn give

h3x = Gxt + w1 or h3 = Gt +
∫

w1 dx+ r(y), (5.16)

h3y = Gyt + w2 or h3 = Gt +
∫

w2 dy + s(x). (5.17)

Consistency for h3 requires that

h3xy = h3yx

and translates into the requirement that w1y = w2x . This imposes the following condition on the functions f and g which
define the second-order system:

α

β
g′(u)+ u f ′(u)+ 2 f (u)= 0, where u = y

x
.

One can rewrite this as

α

β
ug′(u)+ d

du

(
u2 f (u)

)= 0. (5.18)
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When we use the explicit forms of w1 and w2 and make use of the last condition, the form of the functions r(y) and s(x)
occurring in (5.16) and (5.17) may be fixed and the functional form of h3 is found to be

h3(t, x, y)= Gt −
[

α

2x2
+ µ

2y2
− 1

x

(
αg(y/x)+ β

y

x
f (y/x)

)]
.

Therefore the Lagrangian is given by

L = 1

2

(
ẋ2 + ẏ2

)− [
α

2x2
+ µ

2y2
− 1

x

(
αg(y/x)+ β

y

x
f (y/x)

)]
+ dG

dt
. (5.19)

Again the total derivative term, being of little physical significance in the classical case, may be safely discarded. It is
interesting to note that the above second-order system, though similar in some respects to equations of the Ermakov
system, is not merely a mathematical artifact. It is similar in structure to the system studied in [25] in the context of the
dynamics of stellar systems.

A similar exercise may be carried out for the following:

Example: Generalized Van der Waals Potential

ẍ=−
(
2γ x+ x

r3

)
= w1(x, y),

ÿ =−
(
2γ β2 y + y

r3

)
= w2(x, y) where r =

√
x2 + y2,

and γ ,β are parameters. In this case the Lagrangian is given by

L = 1

2

(
ẋ2 + ẏ2

)− [
γ

(
x2 + β2 y2

)− 1

r

]
+ dG

dt
. (5.20)

Similarly for the

Example: Henon–Heiles system,

ẍ=−(Ax+ 2αxy),

ÿ =−(
By + αx2 − β y2

)
, (5.21)

the Lagrangian is given by

L(t, x, ẋ)= 1

2

(
ẋ2 + ẏ2

)−(
A
x2

2
+ B

y2

2
+ αx2 y − β

y3

3

)
+ dG

dt
. (5.22)

6. Outlook

In this paper we have discussed applications of the Jacobi Last Multiplier for the deduction of Lagrangian functions
for the second-order ODEs of the Painlevé–Gambier classification. We have specifically deduced the Lagrangians for the
majority of the six Painlevé equations as also other prototype equations of the Painlevé–Gambier classification. We have
also dwelt on the geometrical background involving the last multiplier. This is an on-going endeavour and we propose to
perform further investigations in our future works. In addition we have used the above technique to analyse a particular
class of coupled second-order equations. Besides the well-known Henon–Heiles system we have obtained the Lagrangian for
a relatively less studied systems occurring in the context of stellar dynamics. The Lagrangians discussed here are found to
admit a Noetherian symmetry, with an associated first integral, which are the Hamiltonians of the equations concerned.
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Abstract
We study a Bäcklund transformation for the dimer self-trapping (DST) model
under open boundary conditions. As in the periodic case, the transformation is
found to be canonical with a corresponding generating function. The spectrality
property of the transformation is investigated. Finally, as an application of
Bäcklund transformations we study its connection with discrete-time dynamics.

1. Introduction

Classical discrete integrable systems have attracted the interest of many researchers over
the recent years. The dimer self-trapping (DST) model, the Toda lattice and the XXX spin
chain are some of the most well-known discrete lattice systems which have been extensively
studied from various perspectives [1, 2]. A novel approach for obtaining parameter-dependent
Bäcklund transformations for discrete lattice models was first discussed by Sklyanin in [3, 4].
Subsequently, many authors have made various contributions in this regard [5–7]. Sklyanin’s
initial work was focussed on systems obeying periodic boundary conditions. However, in
[8] an attempt was made to investigate the problem of deriving Bäcklund transformations
under more general quasi-periodic and open boundary conditions. Recently, there has been a
renewal of interest in this aspect [9]. In this brief paper, we examine the DST model under
open boundary conditions and derive a parameter-dependent Bäcklund transformation for the
model. The canonical nature of the transformation is explicitly deduced, and the property
of spectrality is investigated. Finally, the connection of such Bäcklund transformations to
discrete-time dynamics of the system is briefly discussed.

2. Formulation

The DST model may be described by a system of difference equations:

q̇n = qn+1 − q2
nrn, ṙn = −rn−1 + qnr

2
n, n = 1, . . . , N. (2.1)

0266-5611/09/085002+11$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1
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These may be obtained from the consistency of the following linear system:

�n+1 = �n�n, �̇n = Mn�n, (2.2)

where

�n(u) =
(

u + qnrn qn

rn 1

)
and Mn(u) =

(
u
2 qn

rn−1 − u
2

)
, (2.3)

and u is, in general, a complex spectral parameter. Equations (2.1) define a Hamiltonian
system with a symplectic structure given by(

q̇n

ṙn

)
=
(

0 1
−1 0

)( δH
δqn

δH
δrn

)
and H = 1

2

∑
n

(qn+1rn + qnrn−1 − qnrn). (2.4)

Usually, we consider a chain of N lattice points and assume that the lattice variables obey
periodic boundary conditions:

qn+N = qn, rn+N = rn.

Consistency of the linear system (2.2) implies

�̇n(u) = Mn+1(u)�n(u) − �n(u)Mn(u), n = 1, . . . , N, (2.5)

which yields the equation of motion (2.1). The r-matrix formalism has proved to be a
very powerful and useful tool in the analysis of integrable Hamiltonian systems. Given the
Hamiltonian structure (2.4), it is easy to verify that

{�n(u) ⊗, �n(v)} = [r(u − v), �n(u) ⊗ �n(v)], (2.6)

where the classical r-matrix is given by

r(u − v) = − 1

u − v

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ . (2.7)

The monodromy matrix is then defined as the ordered product,

T (u) = �n(u) · · · �1(u), (2.8)

and it satisfies the Sklyanin quadratic algebra:

{T (u) ⊗, T (v)} = [r(u − v), T (u) ⊗ T (v)]. (2.9)

The generator of the integrals of motion follows from the trace of (2.9) and, in the periodic
case, is given by

t (u) = tr T (u) = uN + uN−1H1 + uN−2H2 + · · · , (2.10)

where

H1 =
N∑

i=1

qiri, H2 =
N∑

i=1

qi+1ri +
∑
i<j

(qiri)(qj rj ).

The Hamiltonian of the system is a nonlinear combination of the above constants of motion,
namely

Hperiodic =
N∑

i=1

qi+1ri − 1

2

N∑
i=1

q2
i r

2
i . (2.11)

2
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2.1. Open boundary conditions

To study the system (2.1) under open boundary conditions we replace (2.5) by the following
system of equations:

�̇j (u) = Mj+1(u)�j (u) − �j (u)Mj(u),

with Mn(u) =
(

u
2 qn

rn−1 − u
2

)
, j = 2, . . . , (N − 1)

and

�̇N (u) = MN+1(u)�N(u) − �N(u)MN(u), and �̇1(u) = M2(u)�1(u) − �1(u)M1(u),

(2.12)

with

MN+1(u) =
(

u
2 qN+1

rN − u
2

)
and M1(u) =

(
u
2 q1

r0 − u
2

)
.

The break with periodic boundary conditions is achieved by demanding

qN+1 = θ+ and r0 = θ−, (2.13)

(θ± being constants) so that the equations of motion for the end points of the chain become

q̇1 = q2 − q2
1 r1, ṙ1 = −(θ− − q1r

2
1

)
, (2.14)

q̇N = (
θ+ − q2

NrN

)
, ṙN = −rN−1 + qNr2

N. (2.15)

The Hamiltonian of the system under open boundary conditions is given by

H =
N−1∑
i=1

qi+1ri − 1

2

N∑
i=1

q2
i r

2
i + q1θ− + rNθ+. (2.16)

It may be shown that in such a case [10, 11],

τ(u) = tr[K+(u)U(u)] = tr T (u), where U(u) = T (u)K−(u)T −1(−u) (2.17)

serves as a generator of the conserved quantities, with U(u) satisfying the following reflection
equation (RE) algebra:

{U(u) ⊗, U(v)} = [r(u − v), U(u) ⊗ U(v)]

+ U(1)(u)r(u + v)U(2)(v) − U(2)(v)r(u + v)U(1)(u). (2.18)

The matrices K±(u) involve the non-dynamical parameters determining the boundary
conditions imposed on the system and are, in addition, required to satisfy the following
relations:

K+(u)MN+1(u) = MN+1(−u)K+(u), M1(u)K−(u) = K−(u)M1(−u). (2.19)

In the present case, the following forms of K±(u) are found to be admissible [8]:

K−(u) =
(

θ− u

0 θ−

)
and K+(u) =

(
θ+ 0
u θ+

)
. (2.20)

Having briefly recounted the basic relations governing discrete systems under open
boundary conditions, we shall now describe a systematic procedure for obtaining Bäcklund
transformations for the DST model, under such conditions.

3
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3. Bäcklund transformation

It is worthwhile to briefly review the methodology proposed by Sklyanin in [3], for the periodic
case. This is based on establishing a similarity transformation for the monodromy matrix,
determined by local transformations of the form

b
(i)
λ : �i(u; qi, ri) −→ �i(u; q̃i , r̃i ), i = 1, . . . , N, (3.1)

and being defined by

Wi+1(u, λ)�i(u; q̃i , r̃i ) = �i(u; qi, ri)Wi(u, λ). (3.2)

Here Wi(u, λ) is a suitable non-singular matrix obeying the quadratic algebra (2.9), and λ is
a parameter. The dynamical variables in Wi(u, λ) serve an auxiliary role and are assumed to
satisfy periodic boundary conditions. As a consequence of (3.2), one can easily derive the
following relation:

WN+1(u, λ)T (u; q̃, r̃) = T (u; q, r)W1(u, λ). (3.3)

Therefore, in the periodic case when WN+1(u, λ) = W1(u, λ), one has

tr T (u; q̃, r̃) = tr
{
W−1

N+1(u, λ)T (u; q, r)W1(u, λ)
} = tr T (u; q, r) (3.4)

implying that the Hamiltonian (2.11) is invariant under the transformation (3.2).
In the case of open boundary conditions we shall look for a local one-parameter

transformation of the form (3.2), which manages to keep τ(u) as defined in (2.17) invariant.
This will then guarantee the invariance of the commuting integrals of motion, even after
affecting the local Bäcklund transformation.

Let us write T (u; q̃, r̃) = T̃ (u), after suppressing the arguments, so that (3.3) may be
concisely expressed as

WN+1(u, λ)T̃ (u) = T (u)W1(u, λ). (3.5)

Note that

det �n(u) = det

(
u + qnrn qn

rn 1

)
= u which, in turn, implies det T (u) = un.

This requires in view of (3.2) that

det Wi+1(u, λ) = det Wi(u, λ)

or in other words det Wi(u, λ) be independent of the lattice variables. Furthermore, as Wi(u, λ)

is assumed to be non-singular, we have from (3.5)

T̃ −1(−u)W−1
N+1(−u, λ) = W−1

1 (−u, λ)T −1(−u)

or W1(−u, λ)T̃ −1(−u) = T −1(−u)WN+1(−u, λ).
(3.6)

Consider now the product

K+(u)U(u) = K+(u)T (u)K−(u)T −1(−u).

Using (3.5) and (3.6) this may be written as

K+(u)U(u) = K+(u)
{
WN+1(u, λ)T̃ (u)W−1

1 (u, λ)
}
K−(u)

{
W1(−u, λ)T̃ −1(−u)W−1

N+1(−u, λ)
}
.

Hence

τ(u) = tr[K+(u)U(u)]

= tr
[{

W−1
N+1(−u, λ)K+(u)WN+1(u, λ)

}
T̃ (u)

{
W−1

1 (u, λ)
}
K−(u){W1(−u, λ)}T̃ −1(−u)

]
.

(3.7)

4
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Invariance of the trace follows immediately by demanding

WN+1(−u, λ)K+(u) = K+(u)WN+1(u, λ), (3.8)

W1(u, λ)K−(u) = K−(u)W1(−u, λ). (3.9)

It is interesting to note that these equations are similar to (2.19).
To summarize therefore, in the case of open boundary conditions, the single-parameter

Bäcklund transformation for the chain is determined by (3.2) no doubt, but in addition the
boundary matrices K±(u) should satisfy the additional conditions (3.8) and (3.9). The essential
problem is to find out a suitable gauge matrix, Wi(u, λ), which fulfils all these requirements.
We use the following ansatz for the gauge matrix [9]:

Wi(u, λ) =
(

u − λ + siSi s2
i Si − 2λsi

Si −u − λ + siSi

)
, det Wi(u, λ) = λ2 − u2, (3.10)

where it is assumed that u �= ±λ. Substituting this ansatz for the gauge matrix in (3.2) we get

qi = si+1 − λsi

1 + risi

, q̃i = −si+1 − λsi

1 − r̃i si

, (3.11)

Si = λ

{
ri

1 + risi

− r̃i

1 − r̃i si

}
, Si+1 = ri + r̃i where i = 1, . . . N. (3.12)

On the other hand from (3.8) and (3.9) we find

S1 = 2θ− and SN+1 = 2(θ+ + λsN+1)

s2
N+1

. (3.13)

Equation (3.11) defines the requisite Bäcklund transformation, provided we can express si as
functions of the ri, r̃i’s. This is achieved by noting that (3.12) allows us to eliminate Si :

Si = λ

{
ri

1 + risi

− r̃i

1 − r̃i si

}
= ri−1 + r̃i−1,

and, in turn, yields the following quadratic equation determining si :

s2
i −

(
1

r̃i

+
2λ

ri−1 + r̃i−1
− 1

ri

)
si +

(
λ
(
r̃−1
i − r−1

i

)
ri−1 + r̃i−1

− 1

ri r̃i

)
= 0, i = 2, . . . , N − 1.

(3.14)

Similarly equating S1 and SN+1 from (3.6) with their corresponding values from (3.13) we get

s2
1 −

(
λ

θ−
− 1

r1
+

1

r̃1

)
s1 −

(
1

r1r̃1
+

λ(r−1
1 − r̃−1

1 )

2θ−

)
= 0, (3.15)

s2
N+1 − 2λ

rN + r̃N

sN+1 − 2θ+

rN + r̃N

= 0. (3.16)

These equations implicitly define the Bäcklund transformations (3.11). In fact, one may
consider the entire set of equations (3.11)–(3.16) as defining the Bäcklund transformation
relations.

5
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3.1. Canonicity

It is evident that the manner in which we have defined the Bäcklund transformation (by
demanding the invariance of tr[K+(u)U(u)]) automatically ensures that the transformed
Hamiltonian H(q̃, r̃) = H(q, r) for all values of the parameter λ.

Second, the canonical nature of the transformation is best demonstrated by finding
explicitly a suitable generating function, Fλ(r̃; r), such that

qj = ∂Fλ

∂rj

, q̃j = −∂Fλ

∂r̃j

, Sj = −∂Fλ

∂sj

. (3.17)

In the present case, such a generating function is given by

Fλ(r̃; r) =
N∑

i=1

[si+1(ri + r̃i ) − λ ln(1 + risi)(1 − r̃i si)]

− 2θ−s1 + 2θ+s
−1
N+1 − 2λ ln sN+1 + const. (3.18)

Note that the constant, say C, is independent of dynamical variables, but may depend on the
parameter λ.

3.2. Spectrality

The notion of spectrality is a new feature in the theory of Bäcklund transformations. In a
sense it is a generalization of the concept of canonicity, where, in addition to the canonical
variables (qi, ri) and (q̃i , r̃i ), we define another pair of canonical variables (μ, λ), with μ

being conjugate to the parameter λ of the Bäcklund transformation. We define μ by

μ = ∂Fλ(r̃; r)

∂λ
. (3.19)

Consider the eigenvalue problem for the matrix T (u = λ) = K+(λ)U(λ):

T (λ)	 = 
	. (3.20)

It turns out that the eigenvalue 
 is proportional to the exponential of μ [10]. This means that
the pair (eμ, λ) lies on the characteristic curve of the matrix T (λ) i.e.,

det(eμ − T (λ)) = 0. (3.21)

In general, if Bλ denotes a family of Bäcklund transformations, then it is said to be associated
with a Lax operator T (λ), if for some function f (μ), the pair (λ, f (μ)) lies on the spectral
curve of the Lax operator T (λ):

det(f (μ) − T (λ)) = 0. (3.22)

In the present case, we shall show that f (μ) = eμ explicitly. It will be observed from (3.5),
(3.6), (3.8) and (3.9) that

WN+1(−u, λ)T̃ (u) = WN+1(−u, λ){K+(u)T̃ (u)K−(u)T̃ −1(−u)} = T (u)WN+1(−u, λ).

(3.23)

Setting u = −λ, we find from (3.10) that Wi(−λ, λ) is a projector:

Wi(−λ, λ) =
(−2λ + siSi s2

i Si − 2λsi

Si siSi

)
=
(

siSi − 2λ

Si

)
(1 si). (3.24)

Furthermore, there exists a null vector,

	i =
(−si

1

)
, (3.25)

6
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such that

Wi(−λ, λ)	i =
(

siSi − 2λ

Si

)
(1si)

(−si

1

)
= 0. (3.26)

Consequently, it follows from (3.23) and (3.26):

WN+1(−λ, λ)T̃ (λ)	N+1 = 0. (3.27)

Hence T̃ (λ)	N+1 is proportional to 	N+1, i.e.,

T̃ (λ)	N+1 = 
	N+1. (3.28)

The determination of the eigenvalue 
 may be carried out as follows. Since

T̃ (λ)	N+1 = K+(λ)T̃ (λ)K−(λ)(T̃ −1(−λ)	N+1)

and

T̃ −1(−λ)	N+1 = �̃−1
1 (−λ) · · · �̃−1

N−1(−λ)
{̃
�−1

N (−λ)	N+1
}
,

we shall need to determine a recurrence relation for the 	i’s, so as to shift them from right to
left through the string of �−1

j (−λ)’s. Note that

�̃−1
j (−λ)	j+1 = −1

λ

(
−sj+1 − q̃j

r̃j sj+1 − λ + q̃j r̃j

)
= 1

1 − r̃j sj

	j ,

where explicit use of the Bäcklund transformations for q̃j from (3.11) has been made. This
allows us to run the vectors 	i from right to left and to obtain, as a result,

T̃ −1(−λ)	N+1 =
⎛
⎝ N∏

j=1

1

1 − r̃j sj

⎞
⎠	1.

Next

K−(λ)T̃ −1(−λ)	N+1 =
⎛
⎝ N∏

j=1

1

1 − r̃j sj

⎞
⎠K−(λ)	1 = −1

2

⎛
⎝ N∏

j=1

1

1 − r̃j sj

⎞
⎠(s1S1 − 2λ

−S1

)
,

(3.29)

where we have used the fact that S1 = 2θ−. Note that Wi(u, λ) is also singular at u = λ and
may be expressed as

Wi(λ, λ) =
(

siSi s2
i Si − 2λsi

Si −2λ + siSi

)
=
(

si

1

)
(SisiSi − 2λ) . (3.30)

Hence its action on the vector,

	̃i =
(

siSi − 2λ

−Si

)
, (3.31)

is null, i.e.,

Wi(λ, λ)	̃i = 0.

This allows us to recast (3.29) as

K−(λ)T̃ −1(−λ)	N+1 = −1

2

⎛
⎝ N∏

j=1

1

1 − r̃j sj

⎞
⎠(s1S1 − 2λ

−S1

)
= −1

2

⎛
⎝ N∏

j=1

1

1 − r̃j sj

⎞
⎠ 	̃1.

(3.32)

7
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Applying T̃ (λ) to the left-hand side yields

T̃ (λ)K−(λ)T̃ −1(−λ)	N+1 = −1

2

⎛
⎝ N∏

j=1

1

1 − r̃j sj

⎞
⎠ T̃ (λ)	̃1. (3.33)

But, T̃ (λ)	̃1 = �̃n(λ) · · · �̃1(λ)	̃1 and we have

�̃1(λ)	̃1 =
(

(λ + q̃1r̃1)(s1S1 − 2λ) − q̃1S1

r̃1(s1S1 − 2λ) − S1

)
.

Upon using the Bäcklund transformation relations (3.11)–(3.16) to eliminate the variables
q̃1, r̃1 we find that(

(λ + q̃1r̃1)(s1S1 − 2λ) − q̃1S1

r̃1(s1S1 − 2λ) − S1

)
= λ

1 + r1s1
	̃2.

The generalization of this result is obvious, so that the action of T̃ (λ) on the vector 	̃1 may
be easily calculated, yielding

T̃ (λ)K−(λ)T̃ −1(−λ)	N+1 = −1

2

⎛
⎝ N∏

j=1

1

1 − r̃j sj

⎞
⎠(λN

N∏
k=1

1

1 + risi

)
	̃N+1. (3.34)

Consequently, T (λ)	N+1 = K+(λ)T̃ (λ)K−(λ)T̃ −1(−λ)	N+1

=
⎧⎨
⎩−λN

2

N∏
j=1

1

(1 − r̃j sj )(1 + rj sj )

⎫⎬
⎭K+(λ)

(
sN+1SN+1 − 2λ

−SN+1

)
.

Using the expression for SN+1 given in (3.13) one finds that

K+(λ)

(
sN+1SN+1 − 2λ

−SN+1

)
= − 2θ2

+

s2
N+1

(−sN+1

1

)
.

But the last vector is nothing but 	N+1 as given in (3.25). Thus

T̃ (λ)	N+1 = λNθ2
+

s2
N+1

N∏
j=1

1

(1 + rj sj )(1 − r̃j sj )
	N+1. (3.35)

Comparison with (3.28) shows that the eigenvalue


 = λNθ2
+

s2
N+1

N∏
j=1

1

(1 + rj sj )(1 − r̃j sj )
. (3.36)

Thus we have explicitly identified one of the eigenvalues of T̃ (λ). The other eigenvalue, say

′, follows from the fact that

det T̃ (λ) = θ2
+λNθ2

−(−λ)N = 

′ (3.37)

and is, therefore, given by


′ = (−1)Nθ2
−

λN

⎡
⎣ N∏

j=1

(1 − r̃j sj )(1 + rj sj )

⎤
⎦ s2

N+1. (3.38)

From (3.18) and (3.19) we have

μ = ln

[
1

s2
N+1

N∏
i=1

1

(1 + risi)(1 − r̃i si)

]
+ C ′(λ). (3.39)

8
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Using (3.36) this may be written as

μ = ln 
 +
(
C ′(λ) − N ln λ − ln θ2

+

)
. (3.40)

Clearly C(λ) may be chosen such that

μ = ln 
, (3.41)

and we see that the eigenvalue of T (λ) is nothing but an exponential of the conjugate variable
μ, corresponding to the parameter of the Bäcklund transformation. In this case C(λ) may be
explicitly determined, and is given by

C(λ) = ln

{(
λ

e

)Nλ

θ2λ
+

}
.

3.3. Application to discrete-time dynamics

The problem of discretizing a continuous integrable system, without destroying its integrability,
has a long and chequered history, involving a number of different approaches. In the case
of lattice systems, it is the spatial variable which is discretized, while time is treated as a
continuous variable. In deriving Bäcklund transformations by the method described above,
we have precisely used this approach. However, it is known that a Bäcklund transformation
often provides a discrete-time approximation to a continuous-time integrable system. Indeed,
this aspect was studied in great detail by Suris in a number of papers [12, 13].The basic
feature of this approach is that it keeps intact the Lax pair of the continuous time system,
and is, in principle, applicable to any system admitting an r-matrix interpretation. It will be
observed that the local one-parameter Bäcklund transformation, b

(i)
λ , given by (3.1), gives rise

to a family of maps, Bλ : (q, r) �→ (q̃, r̃), depending on the parameter λ, which preserve the
Hamiltonian. Suppose now there exists a point, λ = λ0, at which Bλ reduces to the identity
mapping. Furthermore, if in a neighbourhood of λ0, the infinitesimal mapping, Bλ0+ε , goes
as ε{H, .} and is able to reproduce the Hamiltonian dynamics under investigation, then Bλ

may be considered as a discrete-time approximation of the model under consideration. In this
section, we investigate this aspect for the DST model.

Let us consider an infinitesimal change in ri and set

r̃i = ri + O(ε), i = 1, . . . , N, where ε = λ−1. (3.42)

Using (3.42) in (3.14) and (3.15) yields up to first order in ε the following:

si ≈ −ε(1 + 2ri−1)r
−2
i , i = 2, . . . , N, and s1 ≈ −ε(1 + 2θ−)r−2

1 . (3.43)

Since r0 = θ− by definition, we can combine these results and write

si = −ε(1 + 2ri−1)r
−2
i + O(ε2), i = 1, 2, . . . , N. (3.44)

Similarly using (3.42) in (3.16) we obtain

sN+1 = −εθ+ + O(ε2). (3.45)

Now from (3.6) we have

Si+1 = ri + r̃i = 2ri + O(ε), that is,

Si = 2ri−1 + O(ε) where i = 2, . . . , (N + 1). (3.46)

Note that S1 has already been exactly determined and has the value 2θ− (see (3.13)). In view
of the fact that r0 = θ− we may write therefore

Si = 2ri−1 + O(ε) where i = 1, . . . , (N + 1). (3.47)

9
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In addition, we note that up to first order in ε the expression for qi in (3.11) reduces to

qi = (1 + 2ri−1)r
−2
i + O(ε).

When the above approximations for si and Si are substituted in to the gauge matrix Wi(u, λ)

given in (3.10), it assumes the following form:

−εWi(u) ≈ I − 2ε

(
u
2 (1 + 2ri−1)r

−2
i

ri−1 − u
2

)
. (3.48)

Consequently,

−εWi(u) = I − 2ε

(
u
2 qi

ri−1 − u
2

)
= I − 2εMi(u) + O(ε2). (3.49)

Hence from the defining relation for the local Bäcklund transformation, namely

Wi+1(u, λ)�i(u; q̃i , r̃i ) = �i(u; qi, ri)Wi(u, λ),

we find

�(u, q̃i , r̃i ) = �(u; qi, ri) + 2ε (Mi+1�(u; qi, ri) − �(u; qi, ri)Mi) + O(ε2). (3.50)

However, as the system is Hamiltonian in nature, the flows are given by (2.5), i.e.,

�̇(u; qi, ri) = Mi+1�(u; qi, ri) − �(u; qi, ri)Mi = {H, �(u; qi, ri)}.
Thus we have the following property of the Bäcklund transformation in the neighbourhood of
ε = 0, that is, as λ → ∞,

Bε�(u; qi, ri) = �(u; q̃i , r̃i ) = �(u; qi, ri) + 2ε{H, �(u; qi, ri)} + O(ε2). (3.51)

This shows that the Bäcklund transformation derived serves as an approximate discrete-time
dynamics for the continuous-time dynamics generated by the system’s Hamiltonian.

4. Discussion

In this paper, we have shown the construction of a canonical Bäcklund transformation for the
DST model, in the presence of open boundary conditions. This builds on our previous work,
in which we had dealt with a quasi-periodic boundary condition and also compliments [9],
in the sense that the ansatz for the gauge matrix, Wi(u, λ), given in (3.10) would probably
work for a large class of discrete models. The canonical nature of the transformations has
explicitly been shown through the derivation of the corresponding generating function. The
commutativity of such transformations is well known, but the connection with discrete-time
dynamics is an interesting feature of Bäcklund transformations derived in the above manner.
The quantum analogues of classical Bäcklund transformations are known to lead to Baxter’s
Q-operator and have been the object of an intense study during the last few years. However,
it would been interesting to derive the analogous results in the case of systems described by
open boundary conditions. This matter is being investigated and will be communicated in due
course.
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[6] Kuznetsov V B and Sklyanin E K 1998 On Bäcklund transformations for many-body systems J. Phys. A: Math.
Gen. 31 2241

[7] Kuznetsov V B, Petrera M and Ragnisco O 2004 Separation of variables and Bäcklund transformations for the
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In this Letter we study the Bäcklund transformation for the discrete Dn type Toda lattice with dynamic
boundary conditions. As in the periodic case, the transformation is found to be canonical with a corre-
sponding generating function.
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1. Introduction

It is well known that many integrable lattice systems retain their integrability even under the imposition of non-periodic boundary
conditions [1–4]. The key to understanding their integrability under such circumstances is the reflection equation algebra which plays an
important role in the study of classical integrable system [5]. The Toda lattice is among the more well-known classical Liouville integrable
systems, which has been extensively studied over the years. Its different versions, corresponding to the various root systems of the affine
algebras, may be summarized by the Hamiltonian

H =
n∑
j=1

p2
j

2
+

n−1∑
j=1

eq j−q j+1 + V (q), with {p j,q j} = δ jk, (1.1)

where the additional potential term V (q) has the following forms for the loop algebras A(1)
n , B(1)

n ,C (1)
n and D(1)

n respectively [6]:

V
A(1)
n
= eqn−q1 , (1.2)

V
B(1)
n
= eqn + e−q1−q2 , (1.3)

V
C (1)
n
= e2qn + e−2q1 , (1.4)

V
D(1)
n
= eqn+qn−1 + e−q1−q2 . (1.5)

In a recent communication Kuznetsov et al. [1] have shown how one may derive a Bäcklund transformation (BT) for the BC-type Toda
lattice under open boundary conditions and have commented on the applicability of their method to a wider class of problems including
the Dn type Toda lattice. In the existing literature on Dn type Toda lattice, there is a generic version of the periodic Toda lattice, due to
Kuznetsov [6] in which the potential term in the Hamiltonian has the following appearance:

V (q)=
n−1∑
j=1

eq j−q j−1 + e−q1−q2 + eqn+qn−1 + A

sinh2 q1
2

+ B

sinh2 q1
+ C

sinh2 qn
2

+ D

sinh2 qn
. (1.6)

* Corresponding author. Tel.: +91 9433069860.
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This system is integrable and includes the preceding potentials as limiting cases. We present a derivation of the Bäcklund transformation
for the Dn type Toda lattice with extra parameters (Inozemtsev case) [7], by employing the 2× 2 Lax matrix given by Kuznetsov in [6]. In
this connection it may be remarked that, Kuznetsov et al. had, in an earlier paper [8] shown how the same system could be generated by
coupling two e(3) tops interacting with the An type Toda lattice.

The Letter is organized as follows. In Section 2 we introduce the Dn type Toda lattice and outline the basic features of the Reflection
Equation Algebra (REA). In addition we introduce the generator of the integrals of motion for the REA. In Section 3 we deduce the Bäcklund
transformation for the model under consideration with dynamic boundaries. Section 4 contains a discussion of the canonicity of such BT.
This is finally followed by a modest outlook. In a short Appendix A we consider the explicit case of four lattice points and exhibit the
inherent implicit nature of the BT under the given circumstances.

2. Lax matrix and the Reflection Equation Algebra

In the following we will use the following version of the local Lax matrix of the periodic Toda lattice

� j(u)=
(

0 −x−1
j

x j u+ ip jx j

)
, j = 3, . . . ,n, (2.1)

with p j and x j satisfying the canonical Poisson brackets

{p j, x j} = δ jk.

It is easy to verify that � j(u) satisfies the Sklyanin quadratic algebra{
�1j (u), �2k (v)

}= [
r(u− v), �1j (u)�2k (v)

]
δ jk, (2.2)

where �1j (u)= � j(u)⊗ I and �2j (u)= I ⊗ � j(u) are the standard tensor products of � j(u) with the 2× 2 unit matrix I and

r(u− v)= i

u− v

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ . (2.3)

Furthermore we consider the following 2× 2 Lax matrices at the first and second lattice sites [6]:

�i(u)=
(

Ai Bi
Ci Di

)
, i = 1,2, (2.4)

where

A1 = u2x1 + u
{
i
(
x21 − 1

)
p1 + c1x1 + c2

}+ c1c2, (2.5)

B1 = u
(
x21 − 1

)
, (2.6)

C1 = u
[
u2 + (

x21 − 1
)
p2
1 − 2ip1(c1x1 + c2)− c21

]
, (2.7)

D1 = u2x1 − u
{
i
(
x21 − 1

)
p1 + c1x1 + c2

}+ c1c2 (2.8)

and

A2 =−u2x2 + u
{
i
(
x22 − 1

)
p2 + c3x2 + c4

}− c3c4, (2.9)

B2 = u
[
u2 + (

x22 − 1
)
p2
2 − 2ip2(c3x2 + c4)− c23

]
, (2.10)

C2 = u
(
x22 − 1

)
, (2.11)

D2 =−u2x2 − u
{
i
(
x22 − 1

)
p2 + c3x2 + c4

}− c3c4. (2.12)

These two matrices satisfy the Reflection Equation Algebra (REA), viz.{
�1α(u), �2β(v)

}= ([
r(u− v), �1α(u)�2β(v)

]+ �1α(u)r(u + v)�2β(v)− �2β(v)r(u + v)�1α(u)
)
δαβ, (2.13)

where α,β = 1,2; and ck (k= 1, . . . ,4) are constant parameters. The local Lax matrices � j(u) with j = 1, . . . ,n may be used to define the
following global Lax matrix, which serves as the generator of the integrals of motion:

T (u)= T (u)�1(u)T−1(−u)�2(u). (2.14)

Note that T (u) here is the classical monodromy matrix defined by

T (u) := �3(u) . . . �n(u). (2.15)

The Hamiltonian H1 may be obtained from the spectral curve of T (u), which is defined by det(T (u)−λI)= 0, and leads to the following
equation, namely

λ2 − λ
[
(−1)nu2n+2 + (−1)nH1u

2n + · · ·]+ 4∏
i=1

(
u2 − c2i

)= 0, (2.16)
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with

H1 =
n∑
j=3

(p jx j)
2 + p2

1

(
x21 − 1

)+ p2
2

(
x22 − 1

)− 2
n−1∑
j=3

x j

x j+1
+ 2x2

x3
+ 2x1xn − 2ip1(c1x1 + c2)− 2ip2(c3x2 + c4). (2.17)

This Hamiltonian may be mapped to that of the periodic Dn type Toda lattice with an additional singular term if we perform the following
change of variables x1 = coshq1, x2 = coshq2, x j = eq j , j = 3, . . . ,n, together with a gauge type canonical transformation of (x1, p1) and
(x2, p2) to eliminate the terms linear in p1 and p2 in (2.17).

The significance of the Lax matrix T (u) is that its spectrum is invariant under the dynamics generated by the Hamiltonian (2.17). The
equations of motion following from the Hamiltonian (2.17) are as follows:

ẋ1 = 2p1
(
x21 − 1

)− 2i(c1x1 + c2), (2.18)

ṗ1 =−2p2
1x1 + 2ic1p1 − 2xn, (2.19)

ẋ2 = 2p2
(
x22 − 1

)− 2i(c3x1 + c4), (2.20)

ṗ2 = 2ip2c3 − 2p2
2x2 −

2

x3
, (2.21)

ẋ j = 2p jx
2
j , j = 3, . . . ,n− 1, (2.22)

ṗ j = 2

x j+1
− 2

x j−1

x2j
− 2p2

j x j, j = 3, . . . ,n− 1, (2.23)

ẋn = 2x2n pn, (2.24)

ṗn =−2xnp
2
n − 2

xn−1

x2n
− 2x1. (2.25)

It is appropriate at this juncture to recollect the basic formalism for discrete integrable systems described by the open boundary
conditions. One can show [4] that the generator of the conserved quantities in such cases is given by

T (u)= tr K+(u)U (u) where U (u)= T (u)K−(u)T−1(−u). (2.26)

The matrices K± are referred to as the boundary matrices and generally depend on the values of the dynamical variables at the boundaries,
besides on the spectral parameter u.

Now as

T (u)= tr
{
K+(u)T (u)K−(u)T−1(−u)

}= tr
{
T (u)K−(u)T−1(−u)K+(u)

}
, (2.27)

a straightforward comparison of (2.27) with (2.14) reveals that, in our case

K1(u)≡ �1(u) and K2(u)≡ �2(u), (2.28)

with the boundary matrices K±(u) depending on the dynamical variables (x1, p1) and (x2, p2). Thus in this sense we may look upon (2.1)
as an open system with dynamic boundary conditions. In order that dT (u)

dt = 0, one requires K±(u) to satisfy the REA (2.13) with the
left-hand side equal to zero. In addition, to ensure involution of the integrals of motion it is necessary that{

U1(u),U2(v)
}= r(u− v)U1(u)U2(v)− U2(v)U1(u)r(u − v)− U1(u)r(u + v)U2(v)+ U2(v)r(u+ v)U1(u). (2.29)

3. Bäcklund transformation

In this section we will construct a Bäcklund Transformation (BT) for the Dn type Toda lattice based on the Hamiltonian approach. The
method proposed in [6,3] relies firstly on our ability to find an invertible matrix M j(u, λ) satisfying the following gauge transformation:

M j(u, λ)� j(u; x, p)= � j(u; y,q)M j+1(u, λ), j = 3, . . . ,n, (3.1)

where we have, for the sake of brevity, dispensed with the subscripts on the x’s and y’s.

Proposition 3.1. If M j(u, λ) is an invertible 2× 2 matrix satisfying the gauge transformation (3.1) then the trace of the generator of the conserved
quantities T , as given in (2.27), is an invariant.

Proof. Eq. (3.1) leads to the following relation for the monodromy matrix T (u):

M3(u, λ)T (u; x, p)= T (u; y,q)Mn+1(u, λ). (3.2)

Note that here x stands for the collective set of variables {x3, . . . , xn} and similarly for y. Upon using (3.1) and (2.14) we obtain

M3(u, λ)T (u; x, p)= M3(u, λ)T (u; x, p)�1(u)T−1(−u; x, p)�2(u)= T (u; y,q)Mn+1(u, λ)�1(u)T−1(−u; x, p)�2(u). (3.3)

Let us now demand that
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Mn+1(u, λ)�1(u; x, p)= �1(u; y,q)Mn+1(−u, λ), (3.4)

then it follows from (3.3) that

M3(u, λ)T (u; x, p)= T (u; y,q)�1(u; y,q)Mn+1(−u, λ)T−1(−u; x, p)�2(u, x, p)

= T (u, y,q)�1(u; y,q)Mn+1(−u, λ)
{
�−1
n (−u; x, p) . . . �−1

3 (−u; x, p)
}
�2(u). (3.5)

However from the local gauge transformation (3.1) we have

M j+1(−u, λ)�−1
j (−u; x, p)= �−1

j (−u; y,q)M j(−u, λ), j = 3, . . . ,n. (3.6)

Using (3.6), the r.h.s. of (3.5) may be simplified to yield

T (u, y,q)�1(u; y,q)T−1(−u; y,q)M3(−u, λ)�2(u; x, p).

Finally, demanding that

M3(−u, λ)�2(u; x, p)= �2(u; y,q)M3(u, λ) (3.7)

we arrive at the relation

M3(u, λ)T (u; x, p)= T (u; y,q)M3(u, λ). (3.8)

Since M3(u, λ) is invertible it follows that

trT (u; x, p)= trT (u; y,q). (3.9)

Thus the conserved quantities are invariant under the BT defined by (3.1). �
To derive the form of the BT we assume the following ansatz for the matrix M j(u, λ), which is in the form of the Lax matrix for the

Isotropic Heisenberg magnet (XXX model) [1,5], viz.

M j(u, λ)=
(
u− λ+ r j R j r2j R j − 2λr j

R j −u − λ+ r j R j

)
, j = 3, . . . ,n, (3.10)

with det(M j(u, λ)) = λ2 − u2 �= 0. The same gauge transformation is used in [8] for constructing a Q-operator for the quantum XXX-
magnet.

Substitution of (3.10) into (3.1) yields the following relations for j = 3, . . . ,n

p j =− iλ

x j
− i

r jx2j
− ir j+1, (3.11)

q j = iλ

y j
+ i

r j y2j
+ ir j+1, (3.12)

R j = 2λ

r j
+ 1

r2j x j
+ 1

r2j y j
, (3.13)

R j+1 =−(x j + y j), j = 3, . . . ,n. (3.14)

From (3.13) and (3.14) we obtain a quadratic equation for r j in terms of x j and y j with j = 4, . . . ,n, namely

r2j (x j−1 + y j−1)+ 2λr j +
(
x−1
j + y−1

j

)= 0. (3.15)

On the other hand from (3.4) and (3.10) we obtain the following relations, upon equating coefficients of the different powers of u:

Rn+1 = 2λ

rn+1
− x1

r2n+1

− y1
r2n+1

, (3.16)

A′1p2
1 + A′2p1 + A′3 = 0, (3.17)

B ′1q21 + B ′2q1 + B ′3 = 0, (3.18)

where the A′i (i = 1,2,3) are given by the following expressions:

A′1 =
(
x21 − 1

)
(x1 + y1), (3.19)

A′2 =
[
−2i(c1x1 + c2)(x1 + y1)− 2i

(
x21 − 1

)(
λ− x1

rn+1
− y1

rn+1

)]
, (3.20)

A′3 = (y1 − x1)

(
λ− x1

rn+1
− y1

rn+1

)2

− 2(c1x1 + c2)

(
λ− x1

rn+1
− y1

rn+1

)

+ (
y21 − 1

)( 2λ

rn+1
− x1

r2n+1

− y1
r2n+1

)
− c21(x1 + y1)− 2c1c2, (3.21)
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and the B ′i (i = 1,2,3) are as follows:

B ′1 =
(
y21 − 1

)
(x1 + y1), (3.22)

B ′2 =−2i(c1 y1 + c2)(x1 + y1)+ 2i
(
y21 − 1

)(
λ− x1

rn+1
− y1

rn+1

)
, (3.23)

B ′3 =−(y1 − x1)

(
λ− x1

rn+1
− y1

rn+1

)2

+ 2(c1 y1 + c2)

(
λ− x1

rn+1
− y1

rn+1

)

+ (
x21 − 1

)( 2λ

rn+1
− x1

r2n+1

− y1
r2n+1

)
− c21(x1 + y1)− 2c1c2. (3.24)

Note that the equations determining p1 and q1 being quadratic in nature we get two values of p1 and q1.
From (3.16) and (3.14) we get

(xn + yn)r
2
n+1 − 2λrn+1 − (x1 + y1)= 0, (3.25)

while using (3.10) in (3.7) we obtain upon equating coefficients of powers of u the following:

R3 = x2 + y2, (3.26)

Ã1p
2
2 + Ã2p2 + Ã3 = 0, (3.27)

B̃1q
2
2 + B̃2q2 + B̃3 = 0, (3.28)

where the Ãi (i = 1,2,3) are given by the following:

Ã1 =
(
x22 − 1

)
(x2 + y2), (3.29)

Ã2 =−
[
2i(c3x2 + c4)(x2 + y2)+ 2i

(
x22 − 1

)
X3

]
, (3.30)

Ã3 =−
[−(y2 − x2)X

2
3 + 2(c3x2 + c4)X3 +

(
y22 − 1

)
Y3 + c23(x2 + y2)− 2c3c4

]
(3.31)

and the B̃ i (i = 1,2,3) are:

B̃1 =
(
y22 − 1

)
(x2 + y2), (3.32)

B̃2 =−
[
2i(c3 y2 + c4)(x2 + y2)− 2i

(
y22 − 1

)
X3

]
, (3.33)

B̃3 =
[
(y2 − x2)X

2
3 − 2(c3 y2 + c4)X3 +

(
x22 − 1

)
Y3 + c23(x2 + y2)− 2c3c4

]
. (3.34)

Here

X3 =−λ+ r3(x2 + y2) (3.35)

and

Y3 = r23(x2 + y2)− 2λr3. (3.36)

From (3.26) and (3.14) we obtain

(x2 + y2)r
2
3 − 2λr3 −

(
x−1
3 + y−1

3

)= 0. (3.37)

So substituting the values of r j , j = 4, . . . ,n from (3.15), of r3 from (3.37) and of rn+1 from (3.25) into (3.11) and (3.12) one can determine
the p j and q j implicitly for j = 3, . . . ,n as functions of the xi ’s and yi ’s and λ. On the other hand since (3.25) determines rn+1 as a function
of (x1, y1) and (xn, yn), the quantities A′i appearing in (3.19)–(3.21) can be expressed in terms of the variables (x1, y1, xn, yn) and this in
turn allows p1 and q1 to be determined from (3.17) and (3.18). A similar procedure when applied to (3.27) and (3.28) determines p2 and
q2 implicitly as functions of xi ’s and yi ’s and λ from the quadratic equation (3.37) and upon using Eqs. (3.29)–(3.34), thereby completing
the Bäcklund transformation for j = 1, . . . ,n. The explicit expressions for p1,q1, p2, and q2 as determined by the above procedure are
given below:

p1 =
i(c1x1 + c2)(x1 + y1)+ i(x21 − 1)(λ− x1+y1

rn+1
)±√

Dp1

(x21 − 1)(x1 + y1)
, (3.38)

q1 =
i(c1 y1 + c2)(x1 + y1)− i(y21 − 1)(λ− x1+y1

rn+1
)±√

Dq1

(y21 − 1)(x1 + y1)
, (3.39)

p2 = i(c3x2 + c4)(x2 + y2)+ i(x22 − 1){−λ+ r3(x2 + y2)} ±
√
Dp2

(x22 − 1)(x2 + y2)
, (3.40)

q2 = i(c3 y2 + c4)(x2 + y2)− i(y22 − 1){−λ+ r3(x2 + y2)} ±
√
Dq2

(y22 − 1)(x2 + y2)
. (3.41)
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Here

Dp1 =−λ2(x21 − 1
)(
y21 − 1

)− (c1x1 + c2)
2(x1 + y1)

2 + c21
(
x21 − 1

)
(x1 + y1)

2 + 2c1c2
(
x21 − 1

)
(x1 + y1), (3.42)

Dq1 =−λ2(x21 − 1
)(
y21 − 1

)− (c1 y1 + c2)
2(x1 + y1)

2 + c21
(
y21 − 1

)
(x1 + y1)

2 + 2c1c2
(
y21 − 1

)
(x1 + y1), (3.43)

Dp2 =−λ2(x22 − 1
)(
y22 − 1

)− (c3x2 + c4)
2(x2 + y2)

2 + c23
(
x22 − 1

)
(x2 + y2)

2 − 2c3c4
(
x22 − 1

)
(x2 + y2), (3.44)

Dq2 =−λ2(x22 − 1
)(
y22 − 1

)− (c3 y2 + c4)
2(x2 + y2)

2 + c23
(
y22 − 1

)
(x2 + y2)

2 − 2c3c4
(
y22 − 1

)
(x2 + y2) (3.45)

and r3 and rn+1 are the solutions of the quadratic equations (3.37) and (3.25) respectively.

Remark. Note that unlike in the case of periodic boundary conditions, where the BT can be explicitly derived [2,8,9], here the BT is defined
in an implicit manner. In Appendix A we explain the implicit nature of the transformation more clearly by considering a lattice with four
points. This appears to be an inherent feature associated with the Bäcklund transformation derived in the above manner (see also [1,3]).

4. Canonicity of the Bäcklund transformation

In order that the Bäcklund transformation derived in the manner of the preceding section be a canonical transformation one must
show that the variables y(x, p;λ) and q(x, p;λ) have the same canonical Poisson brackets as (x, p), as stated in (1.1). One method of
proving the canonicity is to present explicitly the generating function Φλ(y; x) of the canonical transformation. This requires from the
definition of canonical transformations, that

p j = ∂Φλ

∂x j
and q j =−∂Φλ

∂ y j
, j = 1, . . . ,n. (4.1)

The generating function may be formally written as:

Φλ(y; x)=
n∑
j=3

fλ(y j, r j+1; x j, r j)+Φ
(1)
λ (x1, y1, rn+1)+Φ

(2)
λ (x2, y2, r3), (4.2)

where fλ(y j, r j+1; x j, r j) represents the generating function of the bulk of the chain, i.e., for j = 3, . . . ,n and is given by

fλ(y j, r j+1; x j, r j)=−iλ log(x j + y j)− 2λ log(r j)+ i

r j

(
x−1
j + y−1

j

)− ir j+1(x j + y j). (4.3)

To find Φ
(1)
λ (x1; y1, r3) and Φ

(2)
λ (x2; y2, rn+1), one has to integrate partially Eqs. (3.38) to (3.41) w.r.t. p1,q1, p2, and q2 respectively

and check that the results satisfy the definition (4.1). This turns out to be a rather nontrivial computation. Using Maple 12 we have found
a complicated result in terms of elliptic functions, but apparently the result is not very illuminating. To arrive at a more concrete result
we will next calculate an explicit expression for the generating function for the special case of c1 = c2 = c3 = c4 = 0 below.

4.1. A special case c1 = c2 = c3 = c4 = 0

Under the above simplifying assumption, we find from (3.17) and (3.18) upon using (3.19)–(3.24) the following values of p1 and q1,
namely

p1 = iλ

x1 + y1
− i

rn+1
± iλ

√
y21 − 1

(x1 + y1)
√
x21 − 1

, (4.4)

q1 =− iλ

x1 + y1
+ i

rn+1
± iλ

√
x21 − 1

(x1 + y1)
√

y21 − 1
. (4.5)

Similarly from (3.27) and (3.28) we find p2 and q2 to be given by

p2 =− iλ

x2 + y2
+ ir3 ± iλ

√
y22 − 1

(x2 + y2)
√
x22 − 1

, (4.6)

q2 = iλ

x2 + y2
− ir3 ± iλ

√
x22 − 1

(x2 + y2)
√

y22 − 1
. (4.7)

Using the definition (4.1) we now find the generating function for the above simple case to be the following:

Φλ(y; x)=
n∑
j=3

fλ(y j, r j+1; x j, r j)+Φ
(1)
λ (x1; y1, rn+1)+Φ

(2)
λ (x2; y2, r3), (4.8)
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where

fλ(y j; x j)=−iλ log(x j + y j)− 2λ log(r j)+ i

r j

(
x−1
j + y−1

j

)− ir j+1(x j + y j), (4.9)

Φ
(1)
λ (x1; y1)= i λ log(x1 + y1)− i

rn+1
(x1 + y1) ± log

(x1 + y1)(x21 − 1)(y21 − 1)√
x21 − 1

√
y21 − 1

√
x1 − y1 − (x1 y1 + 1)

(4.10)

and

Φ
(2)
λ (x2; y2)=−i λ log(x2 + y2)+ ir3(x2 + y2) ± log

(x2 + y2)(x22 − 1)(y22 − 1)√
x22 − 1

√
y22 − 1

√
x2 − y2 − (x2 y2 + 1)

, (4.11)

and r j(x, y;λ) are defined implicitly through (3.15), (3.25) and (3.37).

5. Discussion

In this Letter we have shown the construction of a canonical Bäcklund transformation for the Dn type Toda lattice. The canonical nature
of the transformations has been explicitly shown through the derivation of the corresponding generating function. The commutativity of
such transformations is well known. The quantum analog of classical Bäcklund transformations, are known to lead to Baxter’s Q -operator
[9] and have been the object of an intense study during the last few years. However, it would be interesting to derive the analogous
results for the case of systems described in this Letter. This matter is being investigated and will be communicated in due course.

Appendix A

As remarked earlier, we examine in this appendix the nature of the BT more explicitly for the case n= 4, i.e., when there are only four
lattice points. As before the first and second lattice sites are identified with the dynamic boundary points of the chain and expressions for
p1,q1, p2 and q2 as given in (3.38)–(3.41) stand. Setting j = 3,4 in (3.11) and (3.12) we have

p3 =− iλ

x3
− i

r3x23
− ir4, (A.1)

q3 = iλ

y3
+ i

r3 y23
+ ir4, (A.2)

p4 =− iλ

x4
− i

r4x24
− ir5, (A.3)

q4 = iλ

y4
+ i

r4 y24
+ ir5. (A.4)

Next from (3.13) we find that

R3 = 2λ

r3
+ 1

r23

(
x−1
3 + y−1

3

)
, (A.5)

R4 = 2λ

r4
+ 1

r24

(
x−1
4 + y−1

4

)
, (A.6)

while from (3.14) we have

R4 =−(x3 + y3) and R5 =−(x4 + y4). (A.7)

Finally (3.16) with n= 4 gives

R5 = 2λ

r5
− 1

r25
(x1 + y1)

while (3.26) stipulates that R3 = (x2+ y2). By equating the respective expressions for R3, R4 and R5 we are led to the following quadratic
equations determining r3, r4 and r5 namely:

(x2 + y2)r
2
3 − 2λr3 −

(
x−1
3 + y−1

3

)= 0,

(x3 + y3)r
2
4 + 2λr4 +

(
x−1
4 + y−1

4

)= 0,

(x4 + y4)r
2
5 − 2λr5 − (x1 + y1)= 0.

Solving these quadratic equations for r3, r4 and r5 and substituting their values in (A.1)–(A.4) we arrive at the following relations:
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p3(x3 + y3)=∓i

[(
y3
x3

)√
λ2 + (x2 + y2)(x3 + y3)

x3 y3
+

√
λ2 − (x3 + y3)(x4 + y4)

x4 y4

]
, (A.8)

p4(x4 + y4)=−2iλ± i

(
y4
x4

)√
λ2 − (x3 + y3)(x4 + y4)

x4 y4
∓ i

√
λ2 + (x4 + y4)(x1 + y1), (A.9)

q3(x3 + y3)=±i

[(
x3
y3

)√
λ2 + (x2 + y2)(x3 + y3)

x3 y3
+

√
λ2 − (x3 + y3)(x4 + y4)

x4 y4

]
, (A.10)

q4(x4 + y4)= 2iλ∓ i

(
x4
y4

)√
λ2 − (x3 + y3)(x4 + y4)

x4 y4
± i

√
λ2 + (x4 + y4)(x1 + y1). (A.11)

An explicit form of the BT necessitates that we be able to solve for say, q3,q4, y3 and y4 in terms of p3, p4, x3 and x4 from the above
set of equations. It is evident from (A.10) and (A.11) that q3 and q4 can be expressed in terms of x3, x4, y3 and y4 (we do not worry
about the presence of x1, x2, y2 and y2 as they are associated with the boundary sites). But we still need to find y3 and y4 in terms of
p3, p4, x3 and x4 together with the boundary variables, which can in principle be achieved by solving (A.8) and (A.9). However in practice
this is a nontrivial task. For instance, introducing the variables

U = y3
x3

and V = y4
x4

we find that (A.8) and (A.9) assume the following forms:

p3x3(1+ U )=∓i

[
U

√
λ2 +

(
x2 + y2

x3

)(
1+ U

U

)
+

√
λ2 − x3

x4

(1+ U )(1+ V )

V

]
,

p4x4(1+ V )=−2iλ± i

[
V

√
λ2 − x3

x4

(1+ U )(1+ V )

V

]
∓ i

√
λ2 + x4(x1 + y1)(1+ V ).

One can attempt to solve for V from the first of these equations in terms of U and then insert the resulting expression into the last
equation to obtain a single equation involving U . However, it is a moot point whether the resulting equation for U , or essentially for y3
can be solved explicitly, especially in the general case of n lattice sites. It is in view of these considerations that we claim that the BT in
this case is an implicit one.
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